Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Based on the commercial aluminium alloy powder blend (Alumix 431D) metal matrix composites reinforced with particles of SiC as well as TiC were produced by conventional powder metallurgy technology and the effect of the type and amounts of reinforced particles on the selected properties and microstructure of sintered composites were investigated. In particular, the densification behaviour, the wear resistance and the corrosion resistance in 3.5% NaCl solution were identified. It was stated that both the type and the weight fraction of carbide used as particulate reinforcement have a great impact on the properties of aluminium alloy matrix composites. It was shown that the introduction of titanium carbide has a more favourable effect on the properties of sintered Alumix 431D matrix composites in comparison to silicon carbide and the optimum content of TiC in composite is 4 wt. % due to the highest hardness, wear resistance (wear rate of 2.865·10 ̄ ³ mm³/m) and simultaneously the best corrosion resistance (corrosion rate of 0.005 mm/year).
Czasopismo
Rocznik
Tom
Strony
art. no. e2023005
Opis fizyczny
Bibliogr. 27 poz., tab., wykr.
Twórcy
autor
- Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology
Bibliografia
- 1. Aatthisugan, I. et al. (2020). Effect of Sintering Temperature on Microstructure and Mechanical Properties of Aluminium Composites, IOP Conference Series: Materials Science and Engineering, https://doi.org/10.1088/1757-899X/912/3/032070.
- 2. Bobic, B., Mitrovic, S., Babic, M., Bobic, I. (2010). Corrosion of Metal-Matrix Composites with Aluminium Alloy Substrate, Tribology in Industry, 32, 3–11.
- 3. Dudhmande, A., Schubert, Th., Balasubramanian, M., Kieback, B. (2005). Sintering and Properties of New P/M Aluminium Alloys and Composites, Powder Metallurgy World Congress & Exhibition, Euro PM 2005. Prague.
- 4. Ghasali, E., Fazili, A., Alizadeh, M., Shirvanimoghaddam, K., Ebadzadeh, T. (2017). Evaluation of Microstructure and Mechanical Properties of Al-TiC Metal Matrix Composite Prepared by Conventional, Microwave and Spark Plasma Sintering Methods, Materials, 10, 1255, https://doi.org/10.3390/ma10111255
- 5. Hemalathaa, A., Udhayakumar, P. (2022). Experimental Investigation on Influence of Process Parameters on Properties of Powder Synthesized Aluminium Metal Matrix Composites by Taguchi’s Analysis, Materials Research, 2022, 25(6), https://doi.org/10.1590/1980-5373-MR-2022-0083
- 6. Izadi, H., Nolting, A., Munro, C., Bishop, D.P., Plucknett, K.P., Gerlich, A.P. (2013) Friction stir processing of Al/SiC composites fabricated by powder metallurgy, Journal of Materials Processing Technology, 213, 1900–1907, https://doi.org/10.1016/j.jmatprotec.2013.05.012.
- 7. Kaftelen, H., Ünlü, N., Göller, G., Öveçoglu, M., Henein, H. (2011). Comparative processing-structure-property studies of Al-Cu matrix composites reinforced with TiC particulates, Composites Part A: Applied Science and Manufacturing, 42, 812–824, https://doi.org/10.1016/j.compositesa.2011.03.016.
- 8. Lee, E., Oak, J.J., Kim, Y., Park, Y. (2017). Effect of Added Gas-Atomized Al-Si/SiCp Composite Powder on the Sinterability and Mechanical Properties of Alumix 431 fabricated by Hot-Pressing Process, Korean Journal of Metals and Materials, 55(2), 98–109, https://doi.org/10.3365/KJMM.2017.55.2.98
- 9. Leszczyńska-Madej, B. (2013). The effect of sintering temperature on microstructure and properties of Al-SiC composites, Archives of Metallurgy and Materials, 58(1), 43–48, https://doi.org/10.2478/v10172-012-0148-7
- 10. Loto, R.T. (2018). Investigation of the influence of SiC content and particle size variation on the corrosion resistance of Al-SiC matrix composite in neutral chloride solution, The International Journal of Advanced Manufacturing Technology, https://doi.org/10.1007/s00170-018-3137-9
- 11. Mahesh, L., Sudheer Reddy, J., Mukunda, P.G. (2017). Compaction, Sintering and Characterization of TiC Reinforced Aluminum Metal Matrix Composites, SSRG International Journal of Mechanical Engineering, 4(2), 23–27, https://doi.org/10.14445/23488360/IJME-V4I2P104
- 12. Matli, P.R., Shakoor, R.A., Mohamed, A.M.A., Gupta, M. (2016). Microwave Rapid Sintering of Al-Metal Matrix Composites: A Review on the Effect of Reinforcements, Microstructure and Mechanical Properties, Metals, 6, 143–162, https://doi.org/10.3390/met6070143
- 13. Mohanavel, V., Rajan, K., Suresh Kumar, S., Udishkumar, S., Jayasekar, C. (2018). Effect of silicon carbide reinforcement on mechanical and physical properties of aluminum matrix composites, Materials Today: Proceedings, 5, 2938–2944, https://doi.org/10.1016/j.matpr.2018.01.089
- 14. Murthy, H.C.A., Singh, S.K. (2015). Influence Of TiC Particulate Reinforcement On The Corrosion Behaviour of Al 6061 Metal Matrix Composites, Advanced Materials Letters, 6(7), 633–640, https://doi.org/10.5185/ amlett.2015.5654
- 15. Padmavathi, C., Upadhyaya, A. (2010). Densification, Microstructure and Properties of Supersolidus Liquid Phase Sintered 6711Al-SiC Metal MatrixComposites, Science of Sintering, 42, 363–382, https://doi.org/10.2298/SOS1003363P
- 16. Patel, M., Singh, M.K., Sahu ,S.K. (2020). Abrasive wear behavior of SiC particulate reinforced AA5052 metal matrix composite, Materials Today, 33(8), https://doi.org/10.1016/j.matpr.2020.03.572
- 17. Pieczonka, T., Kazior, J., Szewczyk-Nykiel, A., Hebda, M., Nykiel, M. (2012). Effect of atmosphere on sintering of Alumix 431D powder, Powder Metallurgy,55(5), 354–360, https://doi.org/10.1179/1743290112Y.0000000015
- 18. Rai, R.N., Saha, S.C., Datta, G.L., Chakraborty, M., Studies on synthesis of in-situ Al-TiC metal matrix composites, 4th International Conference on Advances in Solidification Processes (ICASP-4). 2016, 117, 012042K, https://doi.org/10.1088/1757-899X/117/1/012042
- 19. Reddy, V., Kumar, G.S., Krishnudu, D.M., Rao, H.R. (2020). Mechanical and wear performances of aluminium-based metal matrix composites, Journal of Bio-and Tribo-Corrosion, 6(3), 1–16, https://doi.org/10.1007/s40735-020-00379-2
- 20. Roy, M., Venkataraman, B., Bhanuprasad, V.V., Mahajan, Y.R., Sundararajan, G. (1992). The Effect of Particulate Reinforcement on the Sliding Wear Behavior of Aluminum Matrix Composites, Metallurgical and Materials Transactions A, 23A, 2833–2847.
- 21. Rudianto, H., Jang, G.J., Yang, S.S., Kim, Y.J., Dlouh, I. (2015). Effect of SiC particles on sinterability of Al-Zn-Mg-Cu P/M alloy, Archives of Metallurgy and Materials, 60(2), 1383–1385, https://doi.org/10.1515/amm-2015-0136
- 22. Rudianto, H., Jang, G.J., Yang, S.S., Kim, Y.J., Dlouh, I. (2015). Evaluation of Sintering Behavior of Premix Al-Zn-Mg-Cu Alloy Powder, Advances in Materials Science and Engineering, 2, 1–8, https://doi.org/10.1155/2015/987687
- 23. Sachin, R., Vamshi Krishna, S., Anil Kumar, S., Karthikeyan, R., Saidamma, K., Sunil Kumar Reddy, K. (2022). Corrosion and wear behavior of AMMCs, a review, Materials Today: Proceedings, 62(6), 4140–4146.
- 24. Sambathkumar, M., Navaneethakrishnan, P., Ponappa, K., Sasikumar, K.S.K. (2016). Mechanical and corrosion behavior of Al7075 (hybrid) metal matrix composites by two step stir casting process, Latin American Journal of Solids and Structures, 14(2), 243–255, https://doi.org/10.1590/1679-78253132
- 25. Vani, V.V., Chak, S.K. (2018). The effect of process parameters in Aluminum Metal Matrix Composites with Powder Metallurgy, Manufacturing Review,5(7), 1–13, https://doi.org/10.1051/mfreview/2018001
- 26. Verma, A.S., Sumankant, Suri, N.M., Yashpal, K. (2015). Corrosion Behavior of Aluminum base Particulate Metal Matrix Composites: A review, Materials Today: Proceedings, 2, 2840–2851, https://doi.org/10.1016/j.matpr.2015.07.299
- 27. Zakaria, H.M. (2014). Microstructural and corrosion behavior of Al/SiC metal matrix composites, Ain Shams Engineering Journal, 5, 831–838, https://doi.org/10.1016/j.asej.2014.03.003
Uwagi
1. Section "Mechanics"
2. Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8d9f888-5acf-4345-8095-3219f011759c