PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Some properties of pseudo-BCI algebras

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper the notion of an essential closed deductive system of a pseudo-BCI algebra is defined and investigated. Among other things, it is proved that such a deductive system contains all coatoms of the pseudo-BCI algebra. Also, the notions of homomorphisms and semihomomorphisms of pseudo-BCI algebras are studied and some of their properties are presented.
Słowa kluczowe
Rocznik
Strony
19--35
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Institute of Mathematics and Computer Science, The John Paul II Catholic University of Lublin, Konstantynów 1H, 20-708 Lublin, Poland
Bibliografia
  • [1] W. A. Dudek and Y. B. Jun, Pseudo-BCI algebras, East Asian Math. J. 24 (2008), 187-190.
  • [2] G. Dymek, Atoms and ideals of pseudo-BCI-algebras, Comment. Math. 52 (2012), 73-90, DOI 10.14708/cm.v52i1.5328.
  • [3] G. Dymek, Deductive systems and ideals of pseudo-BCI-algebras, Recent Developments in Mathematics and Informatics (A. Zapała, ed.), Contemporary Mathematics and Computer Science, vol. 1, Wydawnictwo KUL, Lublin, 2016, 37-48.
  • [4] G. Dymek, On compatible deductive systems of pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 22 (2014), 167-187.
  • [5] G. Dymek, On irreducible and prime deductive systems of pseudo-BCI-algebras, Comment. Math. 54 (2014), 67-78, DOI 10.14708/cm.v54i1.763.
  • [6] G. Dymek, On pseudo-BCI-algebras, Ann. Univ. Mariae Curie-Skłodowska Sect. A 69 (2015), 59-71, DOI 10.1515/umcsmath-2015-0012.
  • [7] G. Dymek, p-semisimple pseudo-BCI-algebras, J. Mult.-Valued Logic Soft Comput. 19 (2012), 461-474.
  • [8] G. Dymek, Various deductive systems of pseudo-BCI algebras, J. Mult.-Valued Logic Soft Comput. 28 (2017), 619-641.
  • [9] G. Georgescu and A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK-algebras, Proceedings of DMTCS’01: Combinatorics, Computability and Logic, Springer, London, 2001, 97-114.
  • [10] G. Georgescu and A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL-algebras, Abstracts of The Fifth International Conference FSTA 2000 (Slovakia, February 2000), 90-92.
  • [11] G. Georgescu and A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV-algebras, (Bucharest, May (1999)), The Proceedings The Fourth International Symposium on Economic Informatics, INFOREC Printing House, Bucharest, 961-968.
  • [12] Y. Imai and K. Iséki, On axiom systems of propositional calculi XIV, Proc. Japan Acad. 42 (1966), 19-22, DOI 10.3792/pja/1195522169.
  • [13] K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29, DOI 10.3792/pja/1195522171.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8d7d492-e694-4d86-8346-38eddff5f088
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.