PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Austempering in Zamak Bath: Influence of Austempering Time and Austenitizing Temperature on Ductile Cast Iron Properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The combination of the austempered ductile iron mechanical properties strongly depend on the parameters used on the austempering cycle. On this study, the influence of austempering time and austenitizing temperature on the properties of a ductile iron were evaluated. A metallic bath of Zamak at 380°C was used as an austempering mean. A set of ductile iron blocks were austenitized at 900°C for 90 minutes and submitted to different austempering times in order to determine the best combination of microstructural and mechanical properties. After the definition of the time of austempering, the reduction of the austenitizing temperature was evaluated. The best combination of properties was obtained with austenitizing at 860°C and austempering during 60 minutes.
Słowa kluczowe
Twórcy
autor
  • Federal University of Rio Grande do Sul - School of Engineering - Foundry Laboratory, Porto Alegre, Brazil
autor
  • Federal University of Rio Grande do Sul - School of Engineering - Foundry Laboratory, Porto Alegre, Brazil
  • Federal University of Rio Grande do Sul - School of Engineering - Foundry Laboratory, Porto Alegre, Brazil
autor
  • Federal University of Rio Grande do Sul - School of Engineering - Foundry Laboratory, Porto Alegre, Brazil
  • Federal University of Rio Grande do Sul - School of Engineering - Foundry Laboratory, Porto Alegre, Brazil
  • Federal University of Rio Grande do Sul - School of Engineering - Foundry Laboratory, Porto Alegre, Brazil
Bibliografia
  • [1] J. R. Keough, K. L. Hayrynen, Automotive Applications of Austempered Ductile Iron (ADI): A Critical Review. SAE Transactions 109, 344-354 (2000). JSTOR, ww.jstor.org/stable/44643847.
  • [2] J. R. Keough, K. L. Hayrynen, G. L. Pioszak, Designing with austempered ductile iron (ADI). AFS proceedings, (2010).
  • [3] A. Trudel, M. Gagne, Effect of composition and heat treatment parameters on the characteristics of austempered ductile irons. Canadian Metallurgical Quarterly 36, 5,. 289-298 (1997). DOI: https://doi.org/10.1179/cmq.1997.36.5.289.
  • [4] P. Sellamuthu, D. G. Harris Samuel, D. Dinakaran, V. P. Premkumar, Z. Li, S. Seetharaman, Effect of nickel content and austempering temperature on microstructure and mechanical properties of austempered ductile iron (ADI), IOP Conf. Ser. Mater. Sci. Eng. 383, 1 (2018). DOI: https://doi.org/10.1088/1757-899X/383/1/012069.
  • [5] Amir Sadighzadeh Benam, Effect of alloying elements on austempered ductile iron (ADI) properties and its process. China Foundry 12, 1, 54-70 (2015).
  • [6] M. Bahmani, R. Elliott, N. Varahram, The austempering kinetics and mechanical properties of an austempered Cu-Ni-Mo-Mn alloyed ductile iron. Journal of Materials Science 32, 4783-4791 (1997). DOI: https://doi.org/10.1023/A:1018687115732.
  • [7] M. Cakir, Cemal, et al., The effects of austempering temperature and time onto the machinability of austempered ductile iron. Materials Science and Engineering 407, 147-153 (2005). DOI: https://doi.org/10.1016/j.msea.2005.07.005.
  • [8] Handbook, A.S.M., Volume 4: Heat Treating. ASM International 10 (1991).
  • [9] Ch. Yang, et al., NOx emissions and the component changes of ternary molten nitrate salts in thermal energy storage process. Applied energy 184, 346-352, (2016). DOI: https://doi.org/10.1016/j.apenergy.2016.10.024.
  • [10] Bruno Vaz de Souza, et al., Austempering heat treatments of ductile iron using molten metal baths. Materials and Manufacturing Processes 33,15,1667-1673, (2018). DOI: https://doi.org/10.1080/10426914.2018.1424909.
  • [11] L. Pereira, L.F.S. Júnior, W. M. Pasini, R. F. do Amaral, V. K. de Barcellos, Obtainment of ADI by austempering treatment using zamak 5 bath, Anais do Congresso Anual da ABM, 757-764, (2017). DOI: https://doi.org/10.5151/1516-392X-30312.
  • [12] M. Krupiński, K. Labisz, T. Tański, B. Krupińska, M. Król, M. Polok-Rubiniec, Influence of Mg addition on crystallisation kinetics and structure of the Zn-Al-Cu alloy. Arch. Metall. Mater. 61, 2, 785-790 (2016). DOI: https://doi.org/10.1515/amm-2016-0132.
  • [13] M. Soliman, H. Palkowski, A. Nofal, Multiphase Ausformed Austempered Ductile Iron. Archives of Metallurgy and Materials 62,3,1493-1498 (2017). DOI: https://doi.org/10.1515/amm-2017-0231.
  • [14] L. Meier, et al. In-situ measurement of phase transformation kinetics in austempered ductile iron. Materials Characterization 85, 124-133 (2013). DOI: https://doi.org/10.1016/j.matchar.2013.09.005.
  • [15] M. Górny, E. Tyrała, H. Lopez, Effect of copper and nickel on the transformation kinetics of austempered ductile iron. Journal of Materials Engineering and Performance 23,10, 3505-351 (2014). DOI: https://doi.org/10.1007/s11665-014-1167-5.
  • [16] M. Yescas, H.K.D. Bhadeshia, D. MacKay, Estimation of the amount of retained austenite in austempered ductile irons using neural networks. Mater. Sci. Eng. A 311, 1–2, 162–173 ( 2001). DOI: https://doi.org/10.1016/S0921-5093(01)00913-3.
  • [17] R. C. Thomson, J. S. James, D. C. Putman Modelling microstructural evolution and mechanical properties of austempered ductile iron, Materials Science and Technology 16, 11-12, 1412-1419 (2000). DOI: 10.1179/026708300101507370.
  • [18] ASTM A247-17 Standard Test Method for Evaluating the Microstructure of Graphite in Iron Castings, ASTM International, West Conshohocken, PA, 2017, https://doi.org/10.1520/A0247-17.
  • [19] ASTM International. (2016). ASTM E8/E8M-16a Standard Test Methods for Tension Testing of Metallic Materials. Retrieved from https://doi-org.ez45.periodicos.capes.gov.br/10.1520/E0008_E0008M-16A.
  • [20] ASTM International. (2016). ASTM E23-16b Standard Test Methods for Notched Bar Impact Testing of Metallic Materials. Retrieved from https://doi-org.ez45.periodicos.capes.gov.br/10.1520/E0023-16B.
  • [21] ASTM E3-11(2017) Standard Guide for Preparation of Metallographic Specimens, ASTM International, West Conshohocken, PA, 2017, https://doi-org.ez45.periodicos.capes.gov.br/10.1520/E0003-11R17.
  • [22] B. Bosnjak, B. Radulovic, K. Pop-Tonev, V. Asanovic, Microstructural and Mechanical Characteristics of Low Alloyed Ni-Mo-Cu Austempered Ductile Iron. ISIJ Int. 40, 12, 1246-1252 (2000). DOI: 10.2355/isijinternational.40.1246.
  • [23] M. J. Pérez, M. M. Cisneros, H. F. López, Wear resistance of Cu-Ni-Mo austempered ductile iron. Wear 260, 7-8, 879-885 (2006). DOI: 10.1016/J.WEAR.2005.04.001.
Uwagi
EN
1. The authors acknowledge financial support provided by CNPq and CAPES (Brazilian Funding Agencies).
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8d585b6-da3d-47a5-b52f-1625049f1774
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.