PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation and Properties of Textile Biocomposites with PLA Matrix Reinforced with Flax and Flax/PLA Weft Knitted Fabrics

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wytwarzanie i właściwości tekstylnych biokompozytów o matrycy z PLA wzmocnionej dzianinami rządkowymi z lnu i mieszanek len/PLA
Języki publikacji
EN
Abstrakty
EN
Eco-friendly textile biocomposites with PLA matrix reinforced with flax and flax/PLA weft knitted fabrics without any additional chemical treatment were prepared in this study. Five different kinds of samples were manufactured and investigated: (i) pure PLA sheet and (ii-v) PLA matrix reinforced with weft knits (ii) single jersey flax knit, (iii) single jersey flax/PLA knit, (iv) double single jersey flax knit, (v) double single jersey flax/PLA knit. Tensile and flexural properties of PLA biocomposites with weft knitted fabrics were higher than pure PLA sheet. The highest properties exhibit PLA biocomposites reinforced with single jersey flax knitted fabric. Differential scanning calorimetry (DSC) showed that crystallization rate of PLA matrix is enhanced with the presence of reinforced material - flax knit. It is possible to do an assumption that flax fibre can act as nucleating agents during the crystallization process.
PL
Zaproponowano technologię wytwarzania ekologicznych tekstylnych kompozytów o matrycy z PLA wzmocnionej dzianinami rządkowymi z lnu i mieszanek len/PLA nie poddanych żadnej dodatkowej obróbce chemicznej. Wykonano 5 próbek różniących się strukturą i składem wzmocnienia, przy tych samych parametrach zastosowanej przędzy lnianej oraz multifilamentów PLA wykonanych na własnym stanowisku badawczym. Badano wytrzymałość kompozytów oraz właściwości przy zginaniu, a także za pomocą DSC właściwości krystalizacji matrycy PLA . Otrzymane podczas badań wyniki wskazują na istotne podobieństwo z danymi literaturowymi otrzymanymi przy stosowaniu chemicznej obróbki przędz lnianych włókien z PLA dla zwiększenia adhezji wzmocnienia kompozytów.
Rocznik
Strony
45--50
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
  • SRI Center for Physical Sciences and Technology, Textile Institute, Kaunas, Lithuania
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
autor
  • Department of Materials Engineering, Faculty of Mechanical Engineering and Design, Kaunas University of Technology, Kaunas, Lithuania
Bibliografia
  • 1. Bledzki AK, Jaszkiewicz A, Urbaniak M, Stankowska-Walczak D. Biocomposites in the past and in the Future. Fibres & Textiles in Eastern Europe 2012; 20, 6B(96): 15- 22.
  • 2. Porras A, Maranon A. Development and characterization of a laminate composite material from polylactic acid (PLA) and woven bamboo fabric. Composite Part B 2012: 2782-2788.
  • 3. Oksman K, Sktifvars M, Selin J-F. Natural fibres as reinforcement in polylactic acid (PLA) composites. Composite Science and Technology 2003; 63: 1317-1324.
  • 4. Zafeiropoulos NE. Interface engineering of natural fibre composite for maximum performance. Ed. Woodhead publishing limited, ISBN 978-1-84569-742-6, 2011, p. 414.
  • 5. Bocz K, Szolnoki B, Marosi A, et al. Flax fibre reinforced PLA/TBS biocomposites flame retarded with multifunctional additive system. Polymer Degradation and Stability 2014; 106: 63-73.
  • 6. Graupner N, Herrmann AS, Müssig J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas. Composites: Part A 2009; 40: 810-821.
  • 7. Dong Y, Ghataura A, Takagi H, et al. Polylactic acid (PLA) biocomposites reinforced with coir fibres: Evaluation of mechanical performance and multifunctional properties. Composites: Part A 2014; 63: 76-84.
  • 8. Sujaritjun W, Uawongsunwan P, Pivsa-Art W, Hamada H. Mechanical properties of surface modified natural fiber reinforced PLA biocomposites. Energy Procedia 2013; 34: 664-672.
  • 9. Širvaitienė A, Jankauskaitė V, Bekampienė P, Kondratas A. Influence of natural fibre treatment on interfacial adhesion in biocomposites. Fibres & Textiles in Eastern Europe 2013; 21, 4 (100): 123-129.
  • 10. Jandas PJ, Mohanty S, Nayak SK. Surface treated banana fiber reinforced poly (lactic acid) nanocomposites for disposable applications. Journal of Cleaner Production 2013; 52: 392-401.
  • 11. Xiao-Yun W, Qiu-Hong W, Gu H. Research on mechanical behavior of the flax/polylactic acid composites. Composites Science and Technology 2003; 63: 1317- 1324.
  • 12. Goriparthi BK, Suman KNS, Mohan Rao N. Effect of fiber surface treatments on mechanical and abrasive wear performance of polylactide/jute composites. Composites: Part A 2012; 43: 1800-1808.
  • 13. Raftoyiannis IG. Experimental testing of composite panels reinforced with cotton fibers. Open Journal of Composite Materials 2012; 2: 31-39.
  • 14. Kaewpirom S, Worrarat C. Preparation and properties of pineapple leaf fiber reinforced poly(lactic acid) green composite. Fibres and Polymers 2014; 15: 1469-1477.
  • 15. Zimniewska M, Stevenson A, Sapieja A. et al. Linen fibres based reinforcements for laminated composites. Fibres & Textiles in Eastern Europe 2014; 22 3 (105):103-108.
  • 16. Arifuzzaman Khan GM, Terano M, Gafur MA, Shamsul Alam M. Studies on the mechanical properties of woven jute reinforced poly (L-lactic acid) composites. Journal of King Saud University – Engineering Sciences 2013; DOI: http://dx.doi.org/10.1016/j.jksues.2013.12.002.
  • 17. Alimuzzaman S, Gong RH, Akonda M. Impact properties of PLA/Flax nonwoven biocomposite. Conference Papers in Materials Science 2013; http://dx.doi.org/10.1155/2013/136861.
  • 18. Xue D, Hu H. Mechanical properties of biaxial weft-knitted flax composites. Materials and Design 2013; 46: 364-269.
  • 19. Van den Oever M.J.A., Beck B, Müssig J. Agrofibre reinforced poly(lactic acid) composites:effect of moisture on degradation and mechanical properties. Composites: Part A 2010; 41: 1628-1635.
  • 20. Liu DY, Yuan XW, Bhattacharyya D, Easteal AJ. Characterization of solution cast cellulose nanofibre-reinforced poly(lactic acid). eXPRESS Polymer Letters 2010; 4 (1): 26-31.
  • 21. Huda MS, Mohanty AK, Drzal LT. et al. “Green” composites from recycled cellulose and poly(lactic acid): Physico-mechanical and morphological properties evaluation. Journal of Materials Science 2005; 40: 4221-4229.
  • 22. Krikštanavičienė K, Stanys S, Jonaitienė V. Relation between mathematically simulated and experimental results of polyhidroxybutyrate-co-valerate yarns. Fibres & Textiles in Eastern Europe 2013; 6(102): 27-32.
  • 23. Kong Y, Hay JN. The measurement of the crystalinity of polymers by DSC. Polymer 2002; 43: 3873-3878.
  • 24. Pilla S, Kramschuster A, Lee J, Auer GK, Gong S, Turng LS. Microcellular and solid polylactide–flax fiber composites Composite Interfaces 2009; 16 (7-9): 869-890.
  • 25. Lewitus D, McCarthy S, Ophir A, Kenig S. The Effect of nanoclays on the properties of PLLA-modified polymers part 1: mechanical and thermal properties Journal of Polymers and the Environment 2006; 14: 171-177.
  • 26. Nassiopoulos E, Njuguna J. Thermo-mechanical performance of poly(lactic acid)/flax fibre-reinforced biocomposites. Journal of Materials Design 2014, http://dx.doi.org/10.1016/j.matdes.2014.07.051.
  • 27. Ahmed J, Zhang JX, Song Z, Varshney SK. Thermal properties of polylactides. Journal of Thermal Analysis and Calorimetry 2009; 95(3): 957-964.
  • 28. Cao X, Mohamed A, Gordon SH, Willett JL, Sessa DJ. DSC study of biodegradable poly (lactic acid) and poly (hydroxy ester ether) blends. Thermochimica acta 2003; 406(1): 115-127.
  • 29. Pilla S, Gong S, O'Neill E, Yang L, Rowell, R. M. Polylactide-recycled wood fiber composites. Journal of Applied Polymer Science 2009; 111: 37–47. doi: 10.1002/app.28860.
  • 30. Masirek R, Kulinski Z, Chionna D, Piorkowska E, Pracella M. Composites of poly (L‐lactide) with hemp fibers: Morphology and thermal and mechanical properties. Journal of applied polymer science 2007; 105(1): 255-268.
  • 31. Cantero G, Arbelaiz A, Llano-Ponte R, Mondragon I. Effects of fibre treatment on wettability and mechanical behavious of flax/polypropylene composite. Composite Science and Technology 2003; 63: 1247-1254.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8d46865-bd53-4475-8c2d-2907a0248e9b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.