Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The development of power industry obligates designers, materials engineers to create and implement new, advanced materials, in which Inconel 617 alloy is included. Nowadays, there are a lot of projects which describe microstructure and properties of Inconel 617 alloy. However, the welded joints from mentioned material is not yet fully discussed in the literature. The description of welded joints microstructure is a main knowledge source for designers, constructors and welding engineers in estimating durability process and degradation assessment for elements and devices with welds of Inconel 617 alloy. This paper presents the analysis and assessment of advanced nickel alloy welded joints, which have been done by tungsten inert gas (TIG). Investigations have included analysis made by light microscope and scanning electron microscope. The disclosed precipitates were identified with Energy Dispersive Spectroscopy (EDS) microanalysis, then it were done X-Ray Diffraction (XRD) phases analysis. To confirm the obtained results, a scanning-transmission electron microscope (STEM) analysis was also performed. The purpose of the article was to create a comprehensive procedure for revealing the Inconel 617 alloy structure. The methodology presented in this article will be in future a great help for constructors, material specialists and welding engineers in assessing the structure and durability of the Inconel 617 alloy.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
243--255
Opis fizyczny
Bibliogr. 30 poz., fot., rys., tab.
Twórcy
autor
- Silesian University of Technology Faculty of Materials Engineering and Metallurgy, Institute of Materials Engineering, 8 Krasińskiego Str., 40-019 Katowice, Poland
autor
- Silesian University of Technology Faculty of Materials Engineering and Metallurgy, Institute of Materials Engineering, 8 Krasińskiego Str., 40-019 Katowice, Poland
Bibliografia
- [1] H. Semba, T. Hamaguchi, M. Yoshizawa, H. Okada, A. Ishikawa, Development of Boiler Tubes and Pipes for Advanced USC Power Plants, in: Nippon Steel & Sumitomo Metal Technical Report, 71-77 (2015).
- [2] J. K. Wessel, Nickel and Nickel Alloy, The Handbook of Advanced Materials Enabling New Designs, John Wiley & Sons, New Jersey (2004).
- [3] S. J. Patel, J. J. deBarbadillo, B. A. Baker, R. D. Gollihue, Nickel Base Superalloys for Next Generation Coal Fired AUSC Power Plants, Procedia Engineering 55, 246-252 (2013).
- [4] R. Viswanathan, J. F. Henry, J. Tanzosh, G. Stanko, J. Shingledecker, B. Vitalis, R. Purgert, U.S. program on materials technology for ultra-supercritical coal power plants, Journal of Materials Engineering and Performance 14, 281-292 (2005).
- [5] J. R. Davis, Heat-Resistant Materials, ASM International, Printed in the United Stated of America, (1997).
- [6] S. F. Di Martino, R. G. Faulkner, S. C. Hogg, S. Vujic, O. Tassa, Characterisation of microstructure and creep properties of alloy 617 for high-temperature applications, Materials Science and Engineering A 619, 77-86 (2014).
- [7] VDM Metals GmbH, Alloy 617-Nicrofer 5520 Co, Material Data Sheet No. 4019. https://www.vdmmetals.com/fileadmin/user_up-load/Downloads/Data_Sheets/Data_Sheet_VDM_Alloy_617.pdf, accessed 20 July 2019
- [8] M. Grudzień, L. Tuz, K. Pańcikiewicz, A. Zielińska-Lipiec, Microstructure and Properties of a Repair Weld in a Nickel Based Superalloy Gas Turbine Component, Advances in Materials Science 17, 55-63 (2017).
- [9] S. P. Sridhar, S. A. Kumar, P. Sathiya, A study on the effect of different activating flux on A-TIG welding process of Incoloy 800H, Advances in Materials Science 16, 26-37 (2016).
- [10] T. Chu, H. Xu, Z. Li, F. Lu, Investigation of intrinsic correlation between microstructure evolution and mechanical properties for nickel-based weld metal, Materials & Design 165, 107595 (2019).
- [11] K. Mageshkumar, N. Arivazhagan, P. Kuppan, Studies on the effect of filler wires on micro level segregation of alloying elements in the alloy 617 weld fusion zone, Materials Research Express 11, 116579 (2019).
- [12] C. Soares, Gas Turbines: A handbook of air, land and sea applications, Elsevier Science (2014)
- [13] J. R. Davis, Nickel, Cobalt, and Their Alloys, ASM International, (2000).
- [14] Buehler’s Guide to Materials Preparation, Buehler (2005).
- [15] L. Bjerregaard, K. Geels, B. Ottesen, M. Ruckert, Metalog Guide, Suers A/S (2000).
- [16] Y. Guo, B. Wang, S. Hou, Aging Precipiation Behavior and Mechanical Properties of Inconel 617 Superalloy, Acta Metallurgica Sinica 26, 307-312 (2013).
- [17] E. Gariboldi, M. Cabibbo, S. Spigarelli, D. Ripamonti, Investigation on precipitation phenomena of Ni-22Cr-12Co-9Mo alloy aged and crept at high temperature, International Journal of Pressure Vessels and Piping 85, 63-71 (2008).
- [18] H.K.D.H. Bhadeshia, Nickel Based Superalloy, University of Cambridge. http://www.phase-trans.msm.cam.ac.uk/2003/Superalloys/superalloys.html, accessed 20 July 2019.
- [19] W. Liu, F. Liu, R. Yang, X. Tang, H. Cui, Gleeble simulation of the HAZ in Inconel 617 welding, Journal of Materials ProcessingTechnology 225, 221-228 (2015).
- [20] M. Akbari-Garakani, M. Mehdizadeh, Effect of long-term service exposure on microstructure and mechanical properties of Alloy 617, Materials & Design 32, 2695-2700 (2011).
- [21] M. Cabibbo, E. Gariboldi, S. Spigarelli, D. Ripamonti, Creep behavior of INCOLOY alloy 617, Journal of Materials Science, 43, 2912-2921 (2008).
- [22] X. Li, D. Kininmont, R. Le Pierres, S. J. Dewson, Alloy 617 for the High Temperature Diffusion-Bonded Compact Heat Exchangers, Proceedings of ICAPP, Anaheim, USA, June 8-12, 282-288 (2008).
- [23] M. S. Rahman, G. Priyadarshan, K. S. Raja, C. Nesbitt, M. Misra, Characterization of high temperature deformation behavior of Inconel 617, Mechanism Mater 4, 261-270 (2009).
- [24] T. K. Yeh, H. P. Chang, M. Y. Wang, T. Yuan, J. J. Kai, Corrosion of Alloy 617 in high-temperature gas environments, Nuclear Engineering and Design 27, 257-260 (2014).
- [25] F. Tahir, S. Dahire, Y. Liu, Image-based creep fatigue damage mechanism investigation of Alloy 617 at 950°C, Materials Science & Engineering A 679, 391-400 (2017).
- [26] D. C. Tung, J. C. Lippold, Weld solidification behaviour of Ni-base superalloys for use in advanced supercritical coal-fired power plants, in: Superalloys 2012: 12th International Symposium on Superalloys, The Minerals, Metals & Materials Society, 563-567 (2012).
- [27] L. Ma, Identifying and Understanding Environment-Induced Crack Propagation Behavior in Solid Strengthened Ni-Based Superalloys, Project No. 09-803, University of Nevada, 2012. https://neup.inl.gov/SiteAssets/Fijnal%20%20Reports/NEUP_Project_No_09-803_Final_Report.pdf, accessed 20 July 2019.
- [28] D. Tytko, P. Choi, J. Klower, A. Kostka, G. Inden, D. Raabe, Microstructural evolution of Ni-based superalloy (617B) at 700°C studied by electron microscopy and atom probe tomography, Acta Materialia 60, 1731-1740 (2012).
- [29] A. Hernas, Żarowytrzymałość stali i stopów, Wydawnictwo Politechniki Śląskiej (2000).
- [30] L. E. Shoemaker, J. R. Crum, Nickel - Chromium - Molybdenum Superalloys: The Solution to Corrosion Problems in Wet Limestone FGD Air Pollution Control Systems, Special Metals Corporation, 3200 Riverside Drive Huntington, WV 25705, USA 2014
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8d1dfb1-fb38-43ff-be13-56d6cf4dad24