PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of the projected climate change on soybean water needs in the Kuyavia region in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
According to the SRES A1B climate change scenario, by the end of the 21st century temperature in Poland will increase by 2-4°C, no increase in precipitation totals is predicted. This will rise crop irrigation needs and necessity to develop irrigation systems. Due to increase in temperature and needs of sustainable agriculture development some changes in crop growing structure will occur. An increase interest in high protein crops cultivation has been noted last years and further extension of these acreage is foreseen. Identifying the future water needs of these plants is crucial for planning and implementing sustainable agricultural production. In the study, the impact of projected air temperaturę changes on soybean water needs, one of the most valuable high-protein crops, in 2021-2050 in the Kuyavia region in Poland was analysed. The calculations based on meteorological data collected in 1981-2010 were considered as the reference period. Potential evapotranspiration was adopted as a measure of crop water requirements. The potential evapotranspiration was estimated using the Penman-Monteith method and crop coefficient. Based on these estimations, it was found that in the forecast years the soybean water needs will increase by 5% in the growing period (from 21 April to 10 September), and by 8% in June-August. The highest monthly soybean water needs increase (by 15%) may occur in August. The predicted climate changes and the increase in the arable crops water requirements, may contribute to an increase in the irrigated area in the Kuyavia region and necessity of rational management of water resources.
Wydawca
Rocznik
Tom
Strony
199--207
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Institute of Technology and Life Sciences – National Research Institute, Hrabska Av. 3, Falenty, 05-090 Raszyn, Poland
  • Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bydgoszcz, Poland
  • Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bydgoszcz, Poland
  • Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Department of Agrometeorology, Plant Irrigation and Horticulture, Bydgoszcz, Poland
  • University of Agriculture in Krakow, Faculty of Biotechnology and Horticulture, Department of Plant Biology and Biotechnology, Krakow, Poland
  • Poznan University of Life Sciences, Faculty of Environmental Engineering and Mechanical Engineering, Department of Land Improvement, Environmental Development and Spatial Management, Poznań, Poland
  • Poznan University of Life Sciences, Faculty of Environmental Engineering and Mechanical Engineering, Department of Land Improvement, Environmental Development and Spatial Management, Poznań, Poland
  • Institute of Technology and Life Sciences – National Research Institute, Hrabska Av. 3, Falenty, 05-090 Raszyn, Poland
autor
  • Bydgoszcz University of Science and Technology, Faculty of Agriculture and Biotechnology, Laboratory of Economics and Agribusiness Advisory, Bydgoszcz, Poland
  • Hungarian University of Agriculture and Life Sciences (MATE), Kaposvár, Hungary
Bibliografia
  • ABEDINPOUR M., SARANGI A., RAJPUT T.B.S., SINGH M. 2014. Prediction of maize yield under future water availability scenarios using the AquaCrop model. The Journal of Agricultural Science. Vol. 152 (4) p. 558-574. DOI 10.1017/S0021859614000094.
  • ABDELRAOUF R.E., EL-SHAWADFY M.A., DEWEDAR O.M., HOZAYN M. 2021. Field and modelling study for deficit irrigation strategy on roots volume and water productivity of wheat. Journal of Water and Land Development. No. 49 p. 129–138. DOI 10.24425/jwld.2021.137105.
  • ALCAMO J., MORENO J.M., NOVÁKY B., HINDI M., COROBOV R., DEVOY R.J. N., GIANNAKOPOULOS C., MARTIN E., OLESN J.E., SHVIDENKO A. 2007. Europe. Climate Change 2007. Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Eds. M.L. Parry, O.F. Canziani, J.P. Palutikof, P.J. vander Linden, C.E. Hanson. Cambridge, UK. Cambridge University Press p. 541–580.
  • ALLEN R.G., PEREIRA L.S., RAES D., SMITH M. 1998. Crop evapotranspiration. Guidelines for computing crop water requirements. FAO Irrigation and Drainage Paper. No. 56. Rome, Italy. FAO. ISSN 0254-5284 pp. 300.
  • ALTOBELLI F., MARTA A.D., HEINEN M., JACOBS C., GIAMPIETRI E., MANCINI M., ..., DEL GIUDICE T. 2021. Irrigation Advisory Services: Farmers preferences and willingness to pay for innovation. Outlook on Agriculture. Vol. 48(2) p. 136–142. DOI 10.1177/00307270211002848.
  • BARKER J.B., BHATTI S., HEEREN D.M., NEALE C.M., RUDNICK D.R. 2019. Variable rate irrigation of maize and soybean in West-Central Nebraska under full and deficit irrigation. Frontiers in Big Data. Vol. 2, 34. DOI 10.3389/fdata.2019.00034.
  • BASF 2017. Soja. Poradnik agrotechniczny [Soybean. Agrotechnical guideline] 2017. [Access 23.06.2021]. Available at: https://www.agro.basf.pl/Documents/broszury/poradnik-agrotechniczny-soja-basf-2017.pdf?1570453654459
  • BĄK B., ŁABĘDZKI L. 2014a. Thermal conditions in Bydgoszcz region in growing seasons 2011-2050 in view of expected climate change. Journal of Water and Land Development. No. 23 p. 21–29. DOI 10.1515/jwld-2014-0026.
  • BĄK B., ŁABĘDZKI L. 2014b. Prediction of precipitation deficit and excess in Bydgoszcz region in view of predicted climate change. Journal of Water and Land Development. No. 23 p. 11–19. DOI 10.1515/jwld-2014-0025.
  • BELLALOUI N., MENGISTU A. 2008. Seed composition is influenced by irrigation regimes and cultivar differences in soybean. Irrigation Science. Vol. 26 p. 261–268. DOI 10.1007/s00271-007-0091-y.
  • COBORU 2021. Wyniki plonowania odmian roślin rolniczych w doświadczeniach porejestrowych w województwie łódzkim. Soja 2020 [Yield results of agricultural plant varieties in post-registration experiments in the Łódź Province. Soybean 2020]. Sulejów. Centralny Ośrodek Badania Odmian Roślin Uprawnych SDOO pp. 14.
  • COSTA J.M., ORTUÑO M.F., CHAVES M.M. 2007. Deficit irrigation as a strategy to save water: Physiology and potential application to horticulture. Journal of Integrative Plant Biology. Vol. 49(10) p. 1421–1434. DOI 10.1111/J.1672-9072.2007.00556.X.
  • CRABTREE R.J., YASSIN A.A., KARGOUGOU I., MCNEW R.W. 1985. Effects of alternate-furrow irrigation: Water conservation on the yields of two soybean cultivars. Agricultural Water Management. Vol. 10 (3) p. 253–264. DOI 10.1016/0378-3774(85)90015-0.
  • DEWEDAR O., PLAUBORG F., EL-SHAFIE A., MARWA A. 2021. Response of potato biomass and tuber yield under future climate change scenarios in Egypt. Journal of Water and Land Development. No. 49 p. 139–150. DOI 10.24425/jwld. 2021.137106.
  • DOORENBOS J., PRUITT W.O. 1977. Guidelines for predicting crop water requirements. FAO Irrigation and Drainage Paper. No. 24. Rome. FAO pp. 192.
  • DOORENBOS J., KASSAM A. 1979. Yield response to water. FAO Irrigation and Drainage Paper. No. 33. Rome. FAO. ISBN 9251007446 pp. 192.
  • DORSZEWSKI P., SOBCZYŃSKI T., WENDA-PIESIK A. 2019. Soja w województwach kujawsko-pomorskim i wielkopolskim – innowacyjne rozwiązania w uprawie i skarmianiu dla gospodarstw rolnych. Raport z badań dla Konsorcjum „Moja Soja” [Soybeans in Kuyavian-Pomeranian and Greater Poland provinces – innovative solutions in cultivation and feeding for farms. Research report for the “Moja Soja” Consortium] [online]. Minikowo. Kujawsko-Pomorski Ośrodek Doradztwa Rolniczego. [Access 20.08.2021]. Available at: http://www.mojasoja.eu/
  • DÖLL P. 2002. Impact of climate change and variability on irrigation requirements: A global perspective. Climatic Change. Vol. p. 269–293. DOI 10.1023/A:1016124032231.
  • ECK H.V., MATHERS A.C., MUSICK J.T. 1987. Plant water stress at various growth stages and growth and yield of soybeans. Field Crops Research. Vol. 17(1) p. 1–16. DOI 10.1016/0378-4290(87)90077-3.
  • EEA 2008. Impacts of Europe’s changing climate – 2008 indicator-based assessment. Report No 4/2008. European Environment Agency. ISBN 978-92-9167-372-8 pp. 246.
  • FALLOON P., BETTS R. 2010. Climate impacts on European agriculture and water management in the context of adaptation and mitigation – the importance of an integrated approach. Science of The Total Environment. Vol. 408(23) p. 5667–5687. DOI 10.1016/j.scitotenv.2009.05.002.
  • FLOREK J., CZERWIŃSKA-KAYZER D., JERZAK M.A. 2012. Aktualny stan i wykorzystanie produkcji upraw roślin strączkowych [Current status and use of legume crops production]. Fragmenta Agronomica. Vol. 29(4) p. 45–55.
  • FRAGA H., GARCÍA DE CORTÁZAR ATAURI I., SANTOS J.A. 2018. Viticultural irrigation demands under climate change scenarios in Portugal. Agricultural Water Management. Vol. 196 p. 66–74. DOI 10.1016/j.agwat.2017.10.023.
  • GAWĘDA D., CIERPIAŁA R., BUJAK K., WESOŁOWSKI K. 2014. Soybean yield under different tillage systems. Acta Scientiarum Polonorum Hortorum Cultus. Vol. 13(1) p. 43–54.
  • IPCC 2007. AR4 Climate change 2007. Fourth Assessment Report [online]. Intergovernmental Panel on Climate Change. [Access 23.06.2021]. Available at: https://www.ipcc.ch/assessment-report/ar4/
  • JAGOSZ B., ROLBIECKI S., ROLBIECKI R., ŁANGOWSKI A., SADAN H.A., PTACH W., STACHOWSKI P., KASPERSKA-WOŁOWICZ W., PAL-FAM F., LIBERACKI D. 2021. The water needs of grapevines in central Poland. Agronomy. Vol. 11(3), 416. DOI 10.3390/agron-omy11030416
  • JANECZKO A., BIESAGA-KOŚCIELNIAK J., DZIURKA M., OKLEŠŤKOVÁ J., KOCUREK M., SZAREK-ŁUKASZEWSKA G., JANECZKO Z. 2011. Response of Polish cultivars of soybean (Glycine max (L.) Merr.) to brassinosteroid application. Acta Scientiarum Polonorum. Agricultura. Vol. 10(2) p. 33–50.
  • JERZAK M.J., CZERWIŃSKA-KAYZER D., FLOREK J., ŚMIGLAK-KRAJEWSKA M. 2012. Determinanty produkcji roślin strączkowych jako alternatywnego źródła białka w ramach nowego obszaru polityki rolnej w Polsce [Determinants of legume production as an alternative source of protein in a new area of agricultural policy in Poland]. Roczniki Nauk Rolniczych. Nr 99(1) p. 113–120.
  • KACA E. 2017. Methodology of assessing the relative environmental validity of developing drainage and irrigation on a regional scale. Journal of Water and Land Development. No. 35 p. 101–112. DOI 10.1515/jwld-2017-0073.
  • KACA E., REK-KACA G. 2019. Względna przyrodnicza zasadność rozwoju nawodnień w skali województw w Polsce [Relative nature of the development of irrigation in the scale of provinces in Poland]. In: Proceedings of the Symposium on Plant Irrigation “Irrigation of plants in the light of sustainable rural development – natural, production and technical and infrastructural aspects”. [11–14 June 2019 Bydgoszcz-Fojutowo, Poland] p. 33–35.
  • KARACA C., TEKELIOGLU B., BUYUKTAS D., BASTUG R. 2018. Relations between crop water stress index and stomatal conductance of soybean depending on cultivars. Fresenius Environmental Bulletin. Vol. 27(6) p. 4212–4219.
  • KASPERSKA-WOŁOWICZ W., BOLEWSKI T. 2015. Zmienność temperatury powietrza w Bydgoszczy w latach 1931–2013 [Variability of air temperature in Bydgoszcz in the years 1931–2013]. Woda-Środowisko-Obszary Wiejskie. T. 15. Z. 3(51) p. 25–43.
  • KASPERSKA-WOŁOWICZ W., ŁABĘDZKI L., BĄK B. 2003. Okresy posuszne w rejonie Bydgoszczy [Dry periods in the Bydgoszcz region]. Woda-Środowisko-Obszary Wiejskie. T. 3. Z. 9 p. 39–56.
  • KENNY G.J., HARRISON P.A. 1992. The effects of climate variability and change on grape suitability in Europe. Journal of Wine Research. Vol. 3(3) p. 163–183. DOI 10.1080/09571269208717931.
  • KUCHAR L., IWAŃSKI S. 2011. Symulacja opadów atmosferycznych dla oceny potrzeb nawodnień roślin w perspektywie oczekiwanych zmian klimatycznych [Rainfall simulation for the prediction of crop irrigation in future climate]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 5 p. 7–18.
  • KUCHAR L., IWAŃSKI S. 2013. Ocena opadów atmosferycznych dla potrzeb produkcji roślinnej w perspektywie lat 2050-2060 i wybranych scenariuszy zmian klimatu w północno-centralnej Polsce [Rainfall evaluation for crop production until 2050-2060 and selected climate change scenarios for North Central Poland]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 2 p. 187–200.
  • KUCHAR L., IWAŃSKI S., DIAKOWSKA E., GĄSIOREK E. 2015. Symulacja warunków hydrotermicznych w północnej części centralnej Polski w perspektywie lat 2050–2060 dla potrzeb produkcji roślinnej i wybranych scenariuszy klimatycznych [Simulation of hydrothermal conditions for crop production purpose until 2050-2060 and selected climate change scenarios for North Central Poland]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 2 p. 319–334. DOI 10.14597/infraeco.2015.2.1.026.
  • KUCHAR L., IWAŃSKI S., DIAKOWSKA E., GĄSIOREK E. 2017. Ocena suszy meteorologicznej w 2015 roku w północnej części centralnej Polski z wykorzystaniem wskaźnika hydrotermicznego (HTC) w kontekście zmian klimatycznych [Assessment of meteorological drought in 2015 for North Central part of Poland using hydrothermal coefficient (HTC) in the context of climate change]. Infrastruktura i Ekologia Obszarów Wiejskich. Vol. 1 p. 257–273. DOI 10.14597/infraeco.2017.1.2.019.
  • KUNDZEWICZ Z. 2003. Scenariusze zmian klimatu. W: Czy Polsce grożą katastrofy klimatyczne? [Climate change scenarios. In: Is Poland at risk of climate disasters?]. Warszawa. Komitet Prognoz “Polska 2000 Plus”. Polski Komitet Międzynarodowego Programu „Zmiany globalne geosfery i biosfery” przy Prezydium PAN p. 14–31.
  • KUNDZEWICZ Z. 2007. Projekcje zmian klimatu – ekstrema hydrometeorologiczne [Climate change projections – hydrometeorological extremes]. Proceedings of the I Polish Conference ADAGIO. Poznań, Poland. 24 April 2007.
  • ŁABĘDZKI L. 2006. Susze rolnicze. Zarys problematyki oraz metody monitorowania i klasyfikacji [Agricultural droughts. Outline of the issues and methods of monitoring and classification]. Woda-Środowisko-Obszary Wiejskie. Rozprawy naukowe i monografie. Nr 17. ISSN 1644-1095 pp. 107.
  • ŁABĘDZKI L. 2009a. Przewidywane zmiany klimatyczne a rozwój nawodnień w Polsce [Foreseen climate changes and irrigation development in Poland]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 3 p. 7–18.
  • ŁABĘDZKI L. 2009b. Expected development of irrigation in Poland in the context of climate change. Journal of Water and Land Development. No. 13 p. 17–29.
  • ŁABĘDZKI L. 2017. Potrzeby i stan nawodnień w województwie kujawsko-pomorskim [Irrigation needs and condition in Kuyavian-Pomeranian Province]. Warsztaty dla interesariuszy projektu OPERA [Workshops for the stakeholders of the OPERA project]. [27 November 2017 Minikowo, Poland].
  • ŁABĘDZKI L., BĄK B., LISZEWSKA M. 2013. Wpływ przewidywanej zmiany klimatu na zapotrzebowanie ziemniaka późnego na wodę [Impact of climate change on water needs of late potato]. Infrastruktura i Ekologia Terenów Wiejskich. Vol. 2(I) p. 155–165.
  • ŁABĘDZKI L., KANECKA-GESZKE E., BĄK B., SŁOWIŃSKA S. 2011. Estimation of reference evapotranspiration using the FAO Penman-Monteith method for climatic conditions of Poland. In: Evapotranspiration. Ed. L. Łabędzki. Rijeka, Croatia. InTech. ISBN 98-953-307-251-7 pp. 446. DOI 10.5772/14081.
  • ŁABĘDZKI L., SZAJDA J., SZUNIEWICZ J. 1996. Ewapotranspiracja upraw rolniczych – terminologia, definicje, metody obliczania – Przegląd stanu wiedzy [Evapotranspiration of agricultural crops – terminology, definitions, calculation methods. Review]. Falenty. IMUZ. Materiały Informacyjne. Nr 33 pp. 15.
  • MARKOVIĆ M., JOSIPOVIĆ M., RAVLIĆ M., JOSIPOVIĆ A., ZEBEC V. 2016. Deficit irrigation of soybean (Glycine max (L.) Merr.) based on monitoring of soil moisture, in sub-humid area of eastern Croatia [online]. Romanian Agricultural Research. Vol. 33 p. 1–8. [Access 23.06.2021]. Available at: https://www.research-gate.net/publication/305267560_Deficit_irrigation_of_soybean_-Glycinemax_L_Merr_based_on_monitoring_of_soil_moisture_-in_sub-humid_area_of_eastern_croatia
  • OLESEN J.E., BINDI M. 2002. Consequences of climate change for European agricultural productivity, land use and policy. European Journal of Agronomy. Vol. 16(4) p. 239–262. DOI 10.1016/S1161-0301(02)00004-7.
  • PARRY M.L. (ed.) 2000. Assessment of potential effects and adaptation for climate change in Europe: The Europe ACACIA Project. Jackson Environment Institute. Norwich. University of East Anglia pp. 324.
  • PEJIĆ B., MAKSIMOVIĆ L., CIMPEANU S., BUCUR D., MILIĆ S., ĆUPINA B. 2011. Response of soybean to water stress at specific growth stages. Journal of Food Agriculture and Environment. Vol. 9(1) p. 280–284.
  • Polska Soja 2021. Soja w Polsce. Uprawa soi w Polsce [Soybeans in Poland. Growing soybean in Poland]. [Access 23.06.2021]. Available at: https://www.polskasoja.pl/asp/pl_start.asp?typ=14&menu=3&strona=1
  • RANDALL D.A., WOOD R.A., BONY S., COLMAN R., FICHEFET T., FYFE J., ..., TAYLOR K.E. 2007. Climate models and their evaluation. In: Climate Change 2007. The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Eds. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, H.L. Miller]. Cambridge, UK, New York, USA. Cambridge University Press pp.74.
  • ROLBIECKI R., ROLBIECKI S., FIGAS A., JAGOSZ B., STACHOWSKI P., SADAN H. A., PRUS P., PAL-FAM F. 2021. Requirements and effects of Surface drip irrigation of mid-early potato cultivar Courage on a very light soil in Central Poland. Agronomy. Vol. 11(1), 33. DOI 10.3390/agronomy11010033.
  • SHAMS B.M., BOROUMANDNASAB S., MALEKI A. 2014. Effect of different irrigation regimes on yield water use efficiency and harvest index of soybean cultivars in Khorramabad. Journal of Irrigation Sciences and Engineering. Vol. 37(3) p. 13–20. DOI 20.1001.1.25885952.1393.37.3.2.4.
  • SCHLEGEL A.J., ASSEFA Y., O’BRIEN D., LAMM F.R., HAAG L.A., STONE L.R. 2016. Comparison of corn, grain sorghum, soybean, and sunflower under limited irrigation. Agronomy Journal. Vol. 108 (2) p. 670–679. DOI 10.2134/agronj2015.0332.
  • SERRA I., STREVER A., MYBURGH P., DELOIRE A. 2014. The interaction between rootstocks and cultivars (Vitis vinifera L.) to enhance drought tolerance in grapevine. Australian Journal of Grape Wine Research. Vol. 20 (1) p. 1–14. DOI 10.1111/ajgw.12054.
  • SPECHT J.E., CHASE K., MACRANDER M., GRAEF G.L., CHUNG J., MARKWELL J.P., GERMANN M., ORF J.H., LARK K.G. 2001. Soybean response to water: A QTL analysis of drought tolerance. Crop Science. Vol. 41(2) p. 493–509. DOI 10.2135/cropsci2001.412493x.
  • STACHOWSKI P., MARKIEWICZ J. 2011. Potrzeba nawodnień w centralnej Polsce na przykładzie powiatu kutnowskiego [The need of irrigation in central Poland on the example of Kutno country]. Rocznik Ochrona Środowiska. Vol. 13 p. 1453–1472.
  • SUYKER A.E., VERMA S.B. 2009. Evapotranspiration of irrigated and rainfed maize–soybean cropping systems. Agricultural and Forest Meteorology. Vol. 149(3–4) p. 443–452. DOI 10.1016/j.agrfor-met.2008.09.010.
  • ŚLIWA J., ZAJĄC T., OLEKSY A., KLIMEK-KOPYRA A., LORENC-KOZIK A., KULIG B. 2015. Comparison of the development and productivity of soybean (Glycine max (L.) Merr.) cultivated in western Poland. Acta Scientiarum Polonorum. Agricultura. Vol. 14(4) p. 81–95.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8d0b726-3bfb-4ab1-a4bd-4b04d4512eb4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.