PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Fibre Mercerization on Strength Properties of Agave Cantula Roxb. Strengthen Foamed Concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Researchers are increasingly becoming fascinated by the possibilities of utilizing natural fibre, which is a byproduct of production processes, as an addition in concrete. This fibre exhibits a low density and is amenable to chemical changes. The primary aim of this research study is to examine the influence of agave cantula roxb. fibre (ACRF) in low-density foamed concrete (FC) after being subjected to different doses of alkali treatment using sodium hydroxide (NaOH). Various weight fractions of treated ACRF were employed in the FC mix, namely 0% (as the control), 1%, 2%, 3%, 4%, and 5%. FC with a density of 1060 kg/m3 was produced and subsequently tested. The three types of strength properties that have been evaluated and analysed included flexural, tensile, and compressive strengths. The findings from this study have revealed that the inclusion of 3% of treated ACRF in FC yields highly favourable results in relation to strength properties. The use of treated ACRF improves the FC’s strength characteristics, particularly its bending and tensile strength, by bridging microscopic cracks and filling up gaps. It is noteworthy to emphasize that accumulation and unequal dispersion of ACRF are possible if the weight fraction of ACRF applied above the optimal value of 3% which led to decrease in FC’s strength properties. This exploratory work will lead to a better understanding of the potential applications of treated ACRF in FC. It is critical to encourage the long-term development and implementation of FC products and technology.
Twórcy
  • Nawroz University, College of Engineering, Department of Civil Engineering, Kurdistan Region, Iraq
  • Universiti Sains Malaysia, School of Housing, Building and Planning, 11800, Penang, Malaysia
  • Universiti Tun Hussein Onn Malaysia (UTHM), Faculty of Technology Management and Business, Department of Construction Management, Parit Raja, Batu Pahat, Johor 86400, Malaysia
  • Universiti Malaysia Perlis (UniMAP), Faculty of Civil Engineering & Technology, 01000 Perlis, Malaysia
  • Universiti Malaysia Perlis, Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Malaysia
  • Universiti Malaysia Perlis (UniMAP), Universiti Malaysia Perlis 01000 Perlis, Faculty of Chemical Engineering & Technology, Malaysia
autor
  • University of Technology Malaysia (UTM), Faculty of Civil Engineering, Department of Structure and Materials, Johor Bahru, 81310, Johor, Malaysia
Bibliografia
  • [1] N.M. Ibrahim, R. Che Amat, M. Abdul Rahim, N.L. Rahim, A.R. Abdul Razak, Reclamation and Reutilization of Incinerator Ash in Artificial Lightweight Aggregate. Arch. Metall. Mater. 67 (1), 269-275 (2022). DOI: https://doi.org/10.24425/amm.2022.137501
  • [2] M.N.M. Nawi, W.N. Osman, M.K. Rofie, A. Lee, Supply chain management (SCM): Disintegration team factors in Malaysian Industrialised Building System (IBS) construction projects. Int. J. Supply Chain Manag. 7 (1), 140-143 (2018).
  • [3] N.M. Sany, M. Taib, N. Mohd Alias, Imperative causes of delays in construction projects from developers’ outlook. MATEC Web of Conf. 10, 06005 (2014). DOI: http://dx.doi.org/10.1051/matecconf/20141006005
  • [4] I.H. Aziz, M.M.A. Abdullah, M.A.A.M Salleh, S. Yoriya, R. Abd Razak, R. Mohamed, M.S. Baltatu, The investigation of ground granulated blast furnace slag geopolymer at high temperature by using electron backscatter diffraction analysis. Arch. Metall. Mater. 67, 227-231 (2022). DOI: https://doi.org/10.24425/amm.2022.137494
  • [5] N. Ariffin, M.M.A.B. Abdullah, M.R.R.M.A. Zainol, M.S. Baltatu, L. Jamaludin, Effect of Solid to Liquid Ratio on Heavy Metal Removal by Geopolymer-Based Adsorbent. IOP Conf. Ser. Mater. Sci. Eng. 374, 012045 (2018). DOI: http://dx.doi.org/10.1088/1757-899x/374/1/012045
  • [6] A.M.J. Esruq-Labin, A.I. Che-Ani, N.M. Tawil, M.N.M. Nawi, Criteria for Affordable Housing Performance Measurement: A Review. E3S Web Conf. 3, 01003 (2014). DOI: https://doi.org/10.1051/e3sconf/20140301003
  • [7] S. Ganesan, A.A.I. Che, N. Sani, Performance of polymer modified mortar with different dosage of polymeric modifier. MATEC Web Conf. 15, 01039 (2014). DOI: http://dx.doi.org/10.1051/matecconf/20141501039
  • [8] D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Compressive and flexural strength of fiber-reinforced foamed concrete: Effect of fiber content, curing conditions and dry density, Constr. Build. Mater. 198, 479-493 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2018.11.197
  • [9] O. Onuaguluchi, N. Banthia, Plant-based natural fibre reinforced cement composites: A review. Cem. Concr. Compos. 68, 96-108 (2016). DOI: https://doi.org/10.1016/j.cemconcomp.2016.02.014
  • [10] M.A.O. Mydin, Thin-walled steel enclosed lightweight foamcrete: A novel approach to fabricate sandwich composite, Australian Journal of Basic and Applied Sciences, 5, 1727-1733 (2011).
  • [11] D. Falliano, D. De Domenico, G. Ricciardi, E. Gugliandolo, Improving the flexural capacity of extrudable foamed concrete with glass-fiber bi-directional grid reinforcement: An experimental study. Compos. Struct. 209, 45-59 (2019). DOI: https://doi.org/10.1016/j.compstruct.2018.10.092
  • [12] M.A.O., Mydin, M.M.A.B. Abdullah, M.N. Mohd Nawi, Z. Yahya, L.A. Sofri, M.S. Baltatu, A.V. Sandu, P. Vizureanu, Influence of Polyformaldehyde Monofilament Fiber on the Engineering Properties of Foamed Concrete. Materials 15, 8984 (2022). DOI: http://dx.doi.org/10.3390/ma15248984
  • [13] M.A. Tambichik, A.A. Abdul Samad, N. Mohamad, A.Z. Mohd Ali, M.Z. Mohd Bosro, M.A. Iman, Effect of combining Palm Oil Fuel Ash (POFA) and Rice Husk Ash (RHA) as partial cement replacement to the compressive strength of concrete. Int. J. Integr. Eng. 10 (8), 61-67 (2018). DOI: http://dx.doi.org/10.30880/ijie.2018.10.08.004
  • [14] M.H. Nensok, H. Awang, Fresh state and mechanical properties of ultra-lightweight foamed concrete incorporating alkali treated banana fibre. J. Teknol. 84 (1), 117-128 (2022). DOI: https://doi.org/10.11113/jurnalteknologi.v84.16892
  • [15] Y. Liu, Z. Wang, Z. Fan, J. Gu, Study on properties of sisal fiber modified foamed concrete. IOP Conf. Ser.: Mater. Sci. Eng. 744 (1), 012042 (2020). DOI: http://dx.doi.org/10.1088/1757-899x/744/1/012042
  • [16] L. Yu, Z. Liu, M. Jawaid, E.R. Kenawy, Mechanical properties optimization of fiber reinforced foam concrete. MATEC Web of Conf. 67, 03022 (2016). DOI: http://dx.doi.org/10.1051/matecconf/20166703022
  • [17] H. Awang, A.F. Roslan, Effects of fibre on drying shrinkage, compressive and flexural strength of lightweight foamed concrete. Adv. Mater. Res. 587, 144-149 (2012). DOI: http://dx.doi.org/10.4028/www.scientific.net/AMR.587.144
  • [18] M.R. Jones, K. Ozlutas, L.I. Zheng, Stability and instability of foamed concrete. Mag. Concr. Res. 68 (11), 542-549 (2016). DOI: https://doi.org/10.1680/macr.15.00097
  • [19] M.H. Nensok, H. Awang, Investigation of Thermal, Mechanical and Transport Properties of Ultra Lightweight Foamed Concrete (UFC) Strengthened with Alkali Treated Banana Fibre. J. Adv. Res. Fluid Mech. Therm. Sci. 86, 123-139 (2021). DOI: http://dx.doi.org/10.37934/arfmts.86.1.123139
  • [20] E. Serri, M.Z. Suleiman, The influence of mix design on mechanical properties of oil palm shell lightweight concrete. J. Mater. Environ. Sci. 6, 607-612 (2015).
  • [21] O. Gencel, M. Nodehi, O.Y. Bayraktar, G. Kaplan, A. Benli, A. Gholampour, T. Ozbakkaloglu, Basalt fiber-reinforced foam concrete containing silica fume: An experimental study. Constr. Build. Mater. 326, 126861 (2022). DOI: https://doi.org/10.1016/j.conbuildmat.2022.126861
  • [22] A. Raj, D. Sathyan, K.M. Mini, Physical and functional characteristics of foam concrete: A review. Constr. Build. Mater. 221, 787-799 (2019). DOI: https://doi.org/10.1016/j.conbuildmat.2019.06.052 .
  • [23] A.M. Serudin, M.A. Othuman Mydin, A.N.A. Ghani, Influence of Fibreglass Mesh on Physical Properties of Lightweight Foamcrete. IIUM Eng. J. 22 (1), 23-34 (2021). DOI: http://dx.doi.org/10.31436/iiumej.v22i1.1446
  • [24] M. Musa, A.N. Abdul Ghani, Influence of oil palm empty fruit bunch (EFB) fibre on drying shrinkage in restrained lightweight foamed mortar. Int. J. Innov. Techol. Exp. Eng. 8 (10), 4533-4538 (2019).
  • [25] N.M. Zamzani, A.N.A. Ghani, Effectiveness of ‘cocos nucifera linn’ fibre reinforcement on the drying shrinkage of lightweight foamed concrete. ARPN J. Eng. Appl. Sci. 14 (22), 3932-3937 (2019).
  • [25] S.S. Suhaili, M.A. Othuman Mydin, H. Awang, Influence of Mesocarp Fibre Inclusion on Thermal Properties of Foamed Concrete. J. Adv. Res. Fluid Mech. Therm. Sci. 87 (1), 1-11 (2021). DOI: https://doi.org/10.37934/arfmts.87.1.111
  • [26] A.M. Serudin, M.A. Othuman Mydin, A.N.A. Ghani, Effect of lightweight foamed concrete confinement with woven fiberglass mesh on its drying shrinkage. Rev. Ing. de Construccion. 36 (1), 21-28 (2021). DOI: http://dx.doi.org/10.4067/S0718-50732021000100021
  • [27] M. Ramesh, K. Palanikumar, K.H. Reddy, Plant fibre based bio-composites: Sustainable and renewable green materials. Renew. Sust. Energ. Rev. 79, 558-84 (2017). DOI: https://doi.org/10.1016/j.rser.2017.05.094
  • [28] S.P. Shah, C. Ouyang, Mechanical behavior of fiber-reinforced cement-based composites. Journal of the American Ceramic Society 74 (11), 2727-2953 (2005). DOI: http://dx.doi.org/10.1111/j.1151-2916.1991.tb06836.x
  • [29] P. Sathiamurthi, K.S. Karthi Vinith, T.P. Sathishkumar, S. Arunkumar, A.S. Anaamalaai, Fiber extraction and mechanical properties of Agave Americana/Kenaf fiber reinforced hybrid epoxy composite. Mater. Today: Proc. 46 (17), 8594-8601 (2021). DOI: https://doi.org/10.1016/j.matpr.2021.03.571
  • [30] S.S. Suhaili, M.A. Othuman Mydin, Potential of stalk and spikelets of empty fruit bunch fibres on mechanical properties of lightweight foamed concrete. Int J Sci Technol Res. 9 (3), 3199-3204 (2020).
  • [31] O. Huerta-Cardoso, I. Durazo-Cardenas, V. Merchante-Rodriguez, P. Longhurst, F. Coulon, A. Encinas-Oropesa, Up-cycling of agave tequilana bagasse-fibres: A study on the effect of fibre-surface treatments on interfacial bonding and mechanical properties. Results in Materials 8, 100158 (2020). DOI: https://doi.org/10.1016/j.rinma.2020.100158
  • [32] S.P. Jani, S. Sajith, C. Rajaganapathy, Adam Khan, Mechanical and thermal insulation properties of surface-modified agave Americana/carbon fibre hybrid reinforced epoxy composites. Materials Today: Proceedings 37 (2), 1648-1653 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.07.180
  • [33] M. Jacob, S. Thomas, K.T. Varughea, Mechanical properties of sisal/oil palm hybrid fibre-reinforced natural rubber composites. Compos. Sci. Technol. 64, 955-965 (2004). DOI: https://doi.org/10.1016/S0266-3538(03)00261-6
  • [34] S. Mishra, A.K. Mohanty, L.T. Drzal, M. Misra, S. Parija, S.K. Nayak, S.S. Tipathy, Studies on mechanical performance of biofibre/glass reinforced polyester hybrid composites. Compos Sci Technol. 63 (10), 1377-1385 (2003). DOI: https://doi.org/10.1016/S0266-3538(03)00084-8
  • [35] K. Ramamurthy, E.K. Nambiar, G.I.S. Ranjani, A classification of studies on properties of foam concrete. Cem. Concr. Compos. 31 (6), 388-396 (2009). DOI: https://doi.org/10.1016/j.cemconcomp.2009.04.006
  • [36] A.F. Phius, N.M. Sani, N.M. Tawil, Potential of green Construction in Malaysia: Industrialised Building System (IBS) vs Traditional Construction Method. E3S Web of Conferences 3, 01009 (2014). DOI: http://dx.doi.org/10.1051/e3sconf/20140301009
  • [37] M.F. Mohamed Shajahan, S. Ganesan, N.M. Sani, Laboratory investigation on compressive strength and microstructural features of foamed concrete with addition of wood ash and silica fume as a cement replacement. MATEC Web of Conferences 17, 01004 (2014). DOI: http://dx.doi.org/10.1051/matecconf/20141701004
  • [38] N.M. Zamzani, A.N. Abdul Ghani, Experimental data on compressive and flexural strengths of coir fibre reinforced foamed concreto at elevated temperatures. Data in Brief. 25, 104320 (2019). DOI: https://doi.org/10.1016/j.dib.2019.104320
  • [39] A.M. Maglad, S. Dip Datta, B.A. Tayeh, Assessing the mechanical, durability, thermal and microstructural properties of sea shell ash based lightweight foamed concrete. Constr. Build. Mater. 402, 133018 (2023). DOI: https://doi.org/10.1016/j.conbuildmat.2023.133018
Uwagi
1. This research has been funded by the Ministry of Higher Education (MOHE) through the Fundamental Research Grant Scheme (FRGS) (FRGS/1/2022/TK01/USM/02/3)
2. Błędna numeracja bibliografii.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8cf2b29-d287-43f4-b39f-0682f9b39441
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.