PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and fabrication of a new fiber-cement-piezoelectric composite sensor for measurement of inner stress in concrete structures

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Rare suitable sensors are reported till now for the accurate measurement of inner forces at the concrete structures. In this study, a novel sensor is designed and fabricated for the evaluation of inner stress in the concrete structures under dynamical loads. By embedding this sensor in the critical points of the modern concrete structures (e.g. high-rise buildings, large-span bridges, dams, etc.), the heath monitoring of such structures may be easily done. The proposed sensor is a 5 cm × 5 cm × 5 cm cube made of a novel cement-resin-fiber composite matrix. A number of circular piezoelectric sheets with the same polarization alignment are embedded at the center of the cube with the certain distance from each other. The composite material used in the construction of the proposed sensor is in fact a new matrix composed of Portland cement, resin, water, fine silica and polymeric fibers which guarantees the strength, safety and sensitivity of the sensor at high level of stresses. The performance and reliability of the presented sensor has been proved through experimental tests. By considering different range of input force frequency (ω), it was found that the simple exponential law ΔV = 0.8 exp(−0.037ω)ΔF exists between the amplitude of output sensor (ΔV) and amplitude of input force (ΔF). Compared to optical sensors and other available types of sensors which usually require special fabrication technology, the proposed sensor is low-price and easy to build and install. High sensitivity and precision in the range of 0.5–50 Hz, good compatibility with concrete, high durability, and the generating of strong output signals are other advantages of the proposed sensor.
Rocznik
Strony
405--416
Opis fizyczny
Bibliogr. 42 poz., fot., rys., wykr.
Twórcy
  • Faculty of Civil Engineering, Hakim Sabzevari University, Sabzevar, Iran
  • Faculty of Electrical and Computer Engineering, Hakim Sabzevari University, Sabzevar, Iran
  • Department of Civil and Architectural Engineering, Islamic Azad University, Neyshabur, Iran
Bibliografia
  • [1] S.B. Beheshti-Aval, M. Lezgy-Nazargah, Assessment of velocity-acceleration feedback in optimal control of smart piezoelectric beams, Smart Struct. Syst. 6 (8) (2010) 921–938.
  • [2] W. Gilewski, A. Al Sabouni-Zawadzka, On possibile applications of smart structures controlled by self-stress, Arch. Civil Mech. Eng. 15 (2) (2015) 469–478.
  • [3] A. Behravan Rad, M. Shariyat, Thermo-magneto-elasticity analysis of variable thickness annular FGM plates with asymmetric shear and normal loads and non-uniform elastic foundations, Arch. Civil Mech. Eng. 16 (3) (2016) 448–466.
  • [4] S. Kamila, Introduction, classification and applications of smart materials: an overview, Am. J. Appl. Sci. 10 (8) (2013) 876–880.
  • [5] P.W. Chen, D.D.L. Chung, Carbon fiber reinforced concrete for smart structures capable of non-destructive flaw detection, Smart Mater. Struct. 2 (1) (1993) 22.
  • [6] B.G. Han, S.W. Sun, S.Q. Ding, Review of nanocarbonengineered multifunctional cementitious composites, Compos. Part A: Appl. Sci. Manuf. 70 (2015) 69–81.
  • [7] E.G. Nawy, Concrete Construction Engineering Handbook, CRC Press, New York, 1997.
  • [8] Vishay Micro-Measurements. Strain gage installations for concrete structures (Application Note TT-611), 2007, 217–220.
  • [9] H. Li, Z.Q. Liu, Z. Li, et al., Study on damage emergency repair performance of a simple beam embedded with shape memory alloys, Adv. Struct. Eng. 7 (6) (2004) 495–502.
  • [10] G. Song, Y.L. Mo, K. Otero, et al., Health monitoring and rehabilitation of a concrete structure using intelligent materials, Smart Mater. Struct. 15 (2) (2006) 309.
  • [11] Z.Q. Liu, Study on Damage Self-monitoring and Self-repair of SMA Smart Concrete Beam, (PhD Thesis), Harbin Institute of Technology, China, 2006.
  • [12] L. Janke, C. Czaderski, M. Motavalli, et al., Applications of shape memory alloys in civil engineering structures-overview, limits and new ideas, Mater. Struct. 38 (5) (2005) 578–592.
  • [13] J.W. Berthold, Historical review of microbend fiber-optic sensors: optical fiber sensors, J. Lightw. Technol. 13 (7) (1995) 1193–1199.
  • [14] K.S.C. Kuang, S.T. Quek, C.G. Koh, et al., Plastic optical fibre sensors for structural health monitoring: a review of recent progress, J. Sens. Sens. Syst. (2009), Article ID 312053.
  • [15] K. Lau, C. Chan, L. Zhou, et al., Strain monitoring in composite-strengthened concrete structures using optical fibre sensors, Compos. Part B: Eng. 32 (1) (2001) 33–45.
  • [16] T.L. Yeo, D. Eckstein, B. McKinley, et al., Demonstration of a fibre-optic sensing technique for the measurement of moisture absorption in concrete, Smart Mater. Struct. 15 (2) (2006) N40.
  • [17] X. Zou, A. Chao, Y. Tian, et al., An experimental study on the concrete hydration process using Fabry–Perot fiber optic temperature sensors, Measurement 45 (5) (2012) 1077–1082.
  • [18] P. Childs, A.C. Wong, W. Terry, et al., Measurement of crack formation in concrete using embedded optical fibre sensors and differential strain analysis, Meas. Sci. Technol. 19 (6) (2008) 1–9.
  • [19] M. Sun, W.J. Staszewski, R.N. Swamy, Smart sensing technologies for structural health monitoring of civil engineering structures, Adv. Civil Eng. (2010), Article ID 724962.
  • [20] B. Han, Y. Wang, S. Dong, L. Zhang, S. Ding, X. Yu, J. Ou, Smart concretes and structures: a review, J. Intell. Mater. Syst. Struct. 26 (11) (2015) 1303–1345.
  • [21] E. Balmes, A. Deraemaeker, Modeling Structures with Piezoelectric Materials: Theory and SDT Tutorial, https://www.sdtools.com.
  • [22] M. Lezgy-Nazargah, Efficient coupled refined finite element for dynamic analysis of sandwich beams containing embedded shear-mode piezoelectric layers, Mech. Adv. Mater. Struct. 23 (3) (2016) 337–352.
  • [23] M. Lezgy-Nazargah, H. Eskandari-Naddaf, Effective coupled thermo-electro-mechanical properties of piezoelectric structural fiber composites: a micromechanical approach, J. Intell. Mater. Syst. Struct. 29 (4) (2018) 496–513.
  • [24] M. Lezgy-Nazargah, A micromechanics model for effective coupled thermo-electro-elastic properties of macro fiber composites with interdigitated electrodes, J. Mech. 31 (2) (2015) 183–199.
  • [25] S.B. Beheshti-Aval, M. Lezgy-Nazargah, P. Vidal, O. Polit, A refined sinus finite element model for the analysis of piezoelectric-laminated beams, J. Intell. Mater. Syst. Struct. 22 (3) (2011) 203–219.
  • [26] S.B. Beheshti-Aval, M. Lezgy-Nazargah, A finite element model for composite beams with piezoelectric layers using a sinus model, J. Mech. 26 (2) (2010) 249–258.
  • [27] S.B. Beheshti-Aval, S. Shahvaghar-Asl, M. Lezgy-Nazargah, M. Noori, A finite element model based on coupled refined highorder global-local theory for static analysis of electromechanical embedded shear-mode piezoelectric sandwich composite beams with various widths, Thin Walled Struct. 72 (2013) 139–163.
  • [28] M. Lezgy-Nazargah, S.M. Divandar, P. Vidal, O. Polit, Assessment of FGPM shunt damping for vibration reduction of laminated composite beams, J. Sound Vib. 389 (2017) 101–118.
  • [29] A. Chaipanich, N. Jaitanong, R. Yimnirun, Effect of compressive stress on the ferroelectric hysteresis behavior in 0-3 PZT–cement composites, Mater. Lett. 64 (5) (2010) 562–564.
  • [30] Z. Li, B. Dong, D. Zhang, Influence of polarization on properties of 0-3 cement-based PZT composites, Cem. Concr. Compos. 27 (1) (2005) 27–32.
  • [31] S. Huang, J. Chang, R. Xu, Piezoelectric properties of 0-3 PZT/sulfoaluminate cement composites, Smart Mater. Struct. 13 (2) (2004) 270–274.
  • [32] Z.J. Li, D. Zhang, K.R. Wu, Cement-based 0-3 piezoelectric composites, J. Am. Ceram. Soc. 85 (2) (2002) 305–313.
  • [33] D. Zhang, K.R. Wu, Z.J. Li, Feasibility study of cement based piezoelectric smart composites, J. Build. Mater. 5 (2) (2002) 141–146.
  • [34] D. Zhang, Z.J. Li, R. Wu, 2-2 Piezoelectric cement matrix composite: Part II. Actuator effect, Cem. Concr. Res. 32 (5) (2002) 825–830.
  • [35] Z.J. Li, D. Zhang, K.R. Wu, Cement matrix 2-2 piezoelectric composite: Part I. Sensory effect, Mater. Struct. 13 (242) (2001) 506–512.
  • [36] L. Qin, S. Huang, X. Cheng, et al., The application of 1-3 cement-based piezoelectric transducers in active and passive health monitoring for concrete structures, Smart Mater. Struct. 18 (2009) 095018.
  • [37] R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectric-pyroelectric composites, Mater. Res. Bull. 13 (5) (1978) 525–536.
  • [38] B. Han, J. Ou, Embedded piezoresistive cement-based stress/strain sensor, Sens. Actuators A 138 (2) (2007) 294–298.
  • [39] H. Xiao, H. Li, J. Ou, Strain sensing properties of cement-based sensors embedded at various stress zones in a bending concrete beam, Sens. Actuators A 167 (2) (2011) 581–587.
  • [40] S.B. Beheshti-Aval, M. Lezgy-Nazargah, Coupled refined layerwise theory for dynamic free and forced responses of piezoelectric laminated composite and sandwich beams, Meccanica 48 (6) (2013) 1479–1500.
  • [41] K. Hornbostel, C.K. Larsen, M.R. Geiker, Relationship between concrete resistivity and corrosion rate – a literature review, Cem. Concr. Compos. 39 (2013) 60–72.
  • [42] D. Wang, Q. Li, H. Zhu, Experimental study on waterproof technology of piezoelectric impedance transducers in concrete, in: Joint Conference of the Symposium on IEEE Conference: Piezoelectricity, acoustic waves, and device applications (SPAWDA) and 2009 China Symposium on Frequency Control Technology, Wuhan, China, 17–20 December, 2009.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8ce6eeb-0a7b-4b94-b74e-ee75886649b6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.