Powiadomienia systemowe
- Sesja wygasła!
- Sesja wygasła!
Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Examining the properties of bubble parameters within a three-phase system is crucial for enhancing and optimizing fluidized bed flotation column cells. This research focuses on the variations in primary bubble parameters within such columns, with the goal of offering a theoretical foundation for the advancement of fluidized bed flotation technology. The experiment utilized steel balls, tap water, and compressed air as the solid, liquid, and gas phases, respectively. Bubble parameters were measured directly using an electrical conductivity probe. Key factors influencing bubble size in the fluidized bed flotation column included the initial static bed height(H*), superficial liquid velocity (UL), superficial gas velocity (UG), and reagent concentration. The study assessed how bubble size and gas holdup are distributed in the fluidization zone and identified how bubble parameters vary with different operating conditions. Findings show that incorporating steel ball particles in the fluidization zone significantly improves bubble stability, reduces the variability of bubble size, and ensures a more consistent bubble distribution. Proper selection of filling particles and accurate bed height adjustment can notably enhance the local gas holdup within the bed. Additionally, it has been found that local gas holdup increases rapidly when the liquid-to-gas velocity ratio drops below a certain threshold.
Słowa kluczowe
Rocznik
Tom
Strony
art. no. 195880
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- China Coal Tianjin Design Engineering Co., Ltd., Tianjin 300120, China
autor
- China Coal Tianjin Design Engineering Co., Ltd., Tianjin 300120, China
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, Jiangsu 221112, China
autor
- China Coal Tianjin Design Engineering Co., Ltd., Tianjin 300120, China
autor
- China Coal Tianjin Design Engineering Co., Ltd., Tianjin 300120, China
autor
- China Coal Tianjin Design Engineering Co., Ltd., Tianjin 300120, China
autor
- China Coal Tianjin Design Engineering Co., Ltd., Tianjin 300120, China
Bibliografia
- ABT, M., FRANZREB, M., JESTÄDT, M., TSCHÖPE, A., 2023. Three-phase fluidized bed electrochemical reactor for the scalable generation of hydrogen peroxide at enzyme compatible conditions, Chem. Eng. J., 476, 146465.
- CHEN, P., LI, Y., HAN, J., JING, L., ZHANG, Z., LI, Y., 2023. Hydrodynamics of fluidized bed flotation column with a homogeneous binary mixture of steel balls. Powder. Technol. 429, 118920.
- CHENG, Y., MIN, F., LI, H., CHEN, J., FU, X., 2018. Effect of reagent interaction on froth stability of coal flotation. Fuel. 318, 123417.
- CHO, Y. S., LASKOWSKI, J. S., 2002. Effect of flotation frothers on bubble size and foam stability. Int. J. Miner. Proces., 64, 69-80.
- FINCH, J. A., GELINAS. S., MOYO., P., 2006. Frother-related research at mcgill university. Miner. Eng.,19, 726-733.
- HAN, J., CHEN, P., LIU, T., LI, Y., 2023a. Research and application of fluidized flotation units: A review. J. Ind. Eng. Chem. 126, 50-68.
- HAN, J., FANG, J., YANG, T., CHEN, P., LIU, T., LI, Y., 2023b. Particle motion analysis of a new three-phase fluidized bed flotation column with glass sphere particles. Adv. Powder. Technol., 34, 104265.
- HAN, J., LI, Y., CHEN, P., 2023c. A study of bubble size/shape evolution in microbubble countercurrent contacting flotation column, Asia-Pac. J. Chem. Eng. 18, e2865.
- HAN, J., LIU, T., LI, Y., CHEN, P., YIN, M., MA, M., EVANS, G. M., 2022. Bed hydrodynamics of a new three-phase fluidized bed flotation column with steel ball particles. Miner. Eng. 184, 107669.
- ITYOKUMBUL, M. T., SALAMA, A. I. A., TAWEEL, A. M. A., 1995, Estimation of bubble size in flotation columns. Miner. Eng., 8, 77-89.
- JIANG, F., YAN, S., QI, G., LI, X., 2023. Particle distribution and pressure drop in a horizontal two-pass liquid-solid circulating fluidized bed heat exchanger, Powder. Technol., 416, 118210.
- JENA, H. M., ROY, G. K., MEIKAP, B. C., 2008. Prediction of gas holdup in a three-phase fluidized bed from bed pressure drop measurement. Chem. Eng. Res. Des. 8, 1301-1308.
- KARAKASHEV, S. I., IVANOVA-STANCHEVA, D. S., GROZEV, N. A., MIRCHEVA, K. M., 2024. Behavior of froth in absence and presence of particles, Miner. Eng., 2024, 12, 108715.
- LIU., T, LI. Y., HE, S., CHEN, P., LI, Z., 2020. Optimization of air parameters in a three-phase fluidized bed flotation column. Powder Technol., 373, 242-253.
- SUR, D. H., MUKHOPADHYAY, M., 2017. Process aspects of three-phase inverse fluidized bed bioreactor: A review. J. Environ. Chem. Eng. 5, 3518-3528.
- REESE, J., SILVA, E. M., YANG, S., FAN, L. -S., 1999. Industrial Applications of Three-Phase Fluidization Systems. Fluidization Solids Handling & Processing. 582-682.
- PAN, Y., BOURNIVAL, G., ATA, S., 2022. Foaming behaviour of frothers in the presence of PAX and salt, Miner. Eng., 2022, 178, 107405.
- PAN, H., LI, Y., LI., N., GAO. F., FU, X., ZHU, R., EVANS, G. M., 2018. Study on gas holdup in a fluidized flotation column from bed pressure drop. Energ. Source. Part. A., 40, 1693-1700.
- PANJIPOUR, R., KARAMOOZIAN, M., ALBIJANIC, B., 2021. Investigations of gas holdup, interfacial area of bubbles and bubble size distributions in a pilot plant flotation column. Miner. Eng. 164, 106819.
- PRAKASH, R., MAJUMDER, S. K., 2020. Effect of particle size and concentration on bubble size distribution and aspect ratio in a counter-current microstructured bubble column. J. Ind. Eng. Chem., 90, 105-116.
- QUINN, J. J., KRACHT, W., GOMEZ, C. O., GAGNON, C., FINCH, J. A., 2007. Comparing the effect of salts and frother (mibc) on gas dispersion and froth properties. Miner. Eng., 20, 1296-1302.
- RAJAPAKSE, N., ZARGAR, M., SEN, T., KHIADANI, M., 2022. Effects of influent physicochemical characteristics on air dissolution, bubble size and rise velocity in dissolved air flotation: A review. Sep. Purif. Technol., 289, 120772.
- SARHAN, A. R., NASER, J., BROOKS, G., 2017, Cfd analysis of solid particles properties effect in three-phase flotation column, Sep. Purif. Technol. ,185, 1-9.
- SEGER M.A., OLIVEIRA, C., RODRIGUES, R. T., 2019. Development of a laboratory-scale flotation column with inlet bubble size measurement. Miner. Eng., 142, 105936.
- TAO, D., 2022. Recent advances in fundamentals and applications of nanobubble enhanced froth flotation: A review, Miner. Eng., 183, 107554.
- WANG, B., YANG, G., TIAN, H., LI, X., YANG, G., SHI, Y., ZHOU, Z., ZHANG, F., ZHANG, Z., 2020. A new model of bubble Sauter mean diameter in fine bubble-dominated columns, Chem. Eng. J., 393, 124673.
- WANG, G., GE, L., MITRA, S., EVANS, G. M., JOSHI, J. B., CHEN, S.Y., 2018, A review of cfd modelling studies on the flotation process. Miner. Eng., 127, 153-177.
- WANG, G., NGUYEN, A. V., MITRA, S., JOSHI, J. B., JAMESON, G. J., EVANS, G. M., 2016. A review of the mechanisms and models of bubble-particle detachment in froth flotation. Sep. Purif. Technol. 170, 155-172.
- ZHANG Z., FANG J., JING L. The separation of fine minerals in the synergy between the vertical fluidization section and inclined channels of the Reflux Classifier. Asia-pacific Journal of Chemical Engineering, 2024, 19(1).
- ZHU, H., ZHU, J., MIN, F., VALDIVIESO, A. L., CORONA, A. M. A., Wang, H., 2021. Effect of frother addition mode on coal flotation in downflow flotation column. J. Clean. Prod. 278, 123844.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8cbbaf5-2b14-480c-b370-eb97c85f98e1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.