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Abstract: This paper investigates the notion of practical feedback stabilization of evolution equations satisfying some relaxed conditions
in infinite-dimensional Banach spaces. Moreover, sufficient conditions are presented that guarantee practical stabilizability of uncertain
systems based on Lyapunov functions. These results are applied to partial differential equations.
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1. INTRODUCTION

In the literature on control theory of time-varying dynamical
systems, controllability and stabilizability are the qualitative control
problems that play an important role in the systems and have
attracted many researchers (Damak et al., 2016; lkeda et al.,
1972; Phat and Ha, 2008; Phat, 2001, 2002; Phat and Kiet, 2002).
The theory was first introduced by Kalman et al. (1963) for the
finite dimensional time-invariant systems. Furthermore, the theory
which related to exponential stability was first introduced by Won-
ham (1967). Lyapunov function approach and the method based
on spectral decomposition are the most widely used techniques
for studying stabilizability of special classes of control systems,
see for example Kobayashi (1989) and Tsinias (1991). In the
infinite-dimensional control systems, the investigation of practical
stabili-zation is more complicated and requires more sophisticated
tech-niques. The practical stabilization is to find the state feed-
back candidate such that the solution of the closed-loop system is
practically exponentially stable in the Lyapunov sense in which the
origin is not necessary to be an equilibrium point. In this case,
Damak et al. (2016) proved the practical feedback stabilization of
the time-varying control systems in Hilbert spaces where the
nominal system is a linear time-varying control system globally
null controllable and the perturbation term satisfies some condi-
tions. Kalman et al. (1963) and Wonham (1967) have shown that
in the finite-dimensional autonomous control system, if the system
is null controllable in finite time, then it is stabilizable. But it does
not hold for the converse. Moreover, if the system is completely
stabilizable, then it is null controllable in finite time. The results of
stabilizability for the finite-dimensional systems can be general-
ized into infinite-dimensional systems. For time-invariant control
systems in Banach spaces, Phat and Kiet (2002) defined an
equivalence between solvability of the Lyapunov equation and
exponential stability of linear system. Based on the Lyapunov
theorem, a relationship between stabilizability and exact null
controllability of linear time-invariant control systems is estab-
lished. Moreover, they gave the exponential stabilizability of a
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class of nonlinear control systems. In recent years, non-
autonomous differential equations on infinite-dimensional spaces
have been studied by many researchers, see the references
Damak and Hammami (2020), Damak (2021), Chen et al. (2020a,
2020b, 2020c, 2021) and Chen (2021) for more details. In the
study by Chen et al. (2020b), sufficient conditions of existence of
mild solutions and approximate controllability for the desired
problem are given by introducing a new Green’s function and
constructing a control function involving Gramian controllability
operator.

In this paper, we extend the results of Pazy (1983) and Phat
and Kiet (2002) to discuss the problem of practical stabilization for
evolution equations in Banach spaces. Based on the exact null
controllability assumption of the linear control system, sufficient
conditions for the stabilizability are established by solving a
standard Lyapunov equation. Further, the nonlinear perturbation
term is locally Lipschitz continuous and satisfies some appropriate
growth conditions. A feedback controller that assures global prac-
tical uniform exponential stability of the closed-loop system has
been proposed, that is, the solutions of the closed-loop system
converge towards an arbitrary small neighbourhood of the origin.

The paper is organized as follows: Section 2 briefly introduces
some notations and necessary preliminaries. Section 3 presents
the required assumptions and the statement of the main results.
Section 4 presents illustrative examples, which shows the im-
portance of this study. Section 5 provides conclusion of this study.

2. PRELIMINARIES

Throughout this paper, we adopt the following notations R+
and X. R+ denotes the set of all non-negative real numbers and X
denotes an infinite-dimensional Banach space with the norm IlIl.
Let X" be the topological dual space of X and U infinite-
dimensional Banach space. Let (y*, x) denote the value of y at x.
L(X) (respectively L(X,Y)) denotes the Banach space of all linear
bounded operators mapping X into X (respectively, X into Y)



§ sciendo

DOI 10.2478/ama-2021-0009

endowed with the norm ITlI=supyex % )

The domain, the image, the adjoint and the inverse operator
of an operator A are denoted as D(A), ImA, A* and A-1 respec-
tively. Everywhere below A is a linear operator in X with domain
D(A), generating a strongly continuous semigroup S(t), that is:
A=limh_>0 %,
in the strong topology. L([t, s], X) denotes the set of all strongly
measurable L, integrable and X valued functions on [t, s]. Let
QeL(X,X*) be a duality operator. We recall that the operator Q is
positive definite in X if (Qx,x) =0 for arbitrary xe X and
(Qx,x) >0forx # 0.

We will denote by LPD(X,X*) and LSPD(X,X*) the set of all
linear bounded positive definite and strongly positive definite
operators mapping X into X*, respectively. Also, we define:

— LP(R+, R+) is the set of functions positive and integrable with
pth power on R. where p = 1 endowed with the norm

1

lpllo=( ™ HPYP for ¢ € Lo(R+,Ry).
- L*(R, F3+) is the set of all measurable functions from R+ to R+

which are essentially bounded endowed with the norm
— lpllw=super d(t) for ¢ € L=(R+, R+).
1 =1, si 9<x<¢C,

(0.4 {0, elsewhere.

We consider the following system:

{)’( =F(,xu), t=t, =0,
x(to) = Xo,

where x € X is the system state, u € U is the control input and

F: R+x X x U — R+ is a given function.

Definition 2.1. System (2.1) is practically stabilizable if there

exists a continuous feedback control u : X — U, such that system

(2.1) with u(t) = u(x(t)) satisfies the following properties.

— For any initial condition x, € X, there exists a unique mild
solution x(t, x,) definedonR+ .

- There exist positive scalars w, k, and r, such that the
solution of the system (2.1) satisfies the following:

Ix(t)ll <klIxolle =@ (t=t0) +r, vt = to 20.

When (i) and (i) are satisfied, we say that Eq. (2.1) with u(t) =
u(x(t)) is globally practically uniformly exponentially stable.
Definition 2.2. (Diesel and Uhl Jr, 1977). A Banach X* has the
Radon-Nikodym property if:

L, ([0,7].X")= (L2 ([0, T], X))".

In the proof of the mains results, we shall use the following
lemmas.
Lemma 2.1. (Nonlinear generalization of Gronwall's inequality,
Zhoo, 2017).

Let B be a non-negative function on R+, that satisfies the fol-
lowing integral inequality:

o)< v+ f;( x(s)0(s) + o(s)8% (s))ds, v= 0,

1)

0<a<1,tz=ty where x and o are non-negative continuous
functions. Then:

t
g(t) S [Vl—oce(l— ) ftO X(S)dS + (1
t
- ) G(S)e(l—a)fstx(r)dr]ﬁ
to
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Lemma 2.2. (Generalized Gronwall-Bellman Inequality, Dragomir,
2002).

Let A, p : R+ — R be continuous functions and ¢ : R+ — R+
is a function, such that:

dH)=AH(t)+p(t), V= t,.
Then, we have the following inequality:

t
DO dlto)eio V[ ek AV p()as

Lemma 2.3. Let a,b= 0and p = 1. Then:
(a+ b)P < 2P~1(aP+bP).

3. MAIN RESULTS
In this section, we shall state and prove our main results.

3.1 Practical stabilization of infinite-dimensional evolution
equations

The purpose of this subsection is to establish the practical
stabilization of evolution equations in Banach spaces. Based on
the exact null-controllability in finite time of the nominal system
whose origin is an equilibrium point, a stabilizing controller for the
nonlinear system is then synthesized that guarantees the uniform
exponential convergence to a neighborhood of the origin. This
leads us to address the problem of practical stability of time-
varying perturbed systems.

Consider infinite-dimensional evolution equations of the
follwing form:

{)’( = Ax + Bu + F(t,x),
x(to) = Xo,

where x € X is the system state, u € U is the control input, X is
a Banach space, X* has the Radon-Nikodym property and U is a
Hilbert space. The operator A:D(A) c X— X is assumed to be the
infinitesimal generator of the C,-semigroup S(t) on X, Be L(U, X)
and the function F: R«x X — R+ is continuous in t and locally
Lipschitz continuous in x, that is for every t; > 0 and constant
c= 0, there is a constant M(c, t;), such that:

IF(tu)-F(tv)I< M(c, t,) lu-vi

holds for all u, ve X, with llull < ¢, vl < cand te [0, t,].
This system is seen as a perturbation of the nominal system:

{)'( = Ax + By,
x(0) = X,,

Next, we are interested in suitable feedback of the for the follow-
ing:
u(t) = Dx(t), (3.3)

where De L(X, U).

Let x(t,xq,u) denote the state of a system (3.1) at moments
t> t, = 0 associated with an initial condition x, € X at t=t, and
input ue U.

Now, we recall the definition of the generator of an exponen-
tially stable semi-group as well as that of the exponential stability
(Curtain and Zwart, 1995).

(3.1)

(32)
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Definition 3.1. The operator A generates an exponentially stable
semigroup S(t) if the initial value problem:

Xx=AX, t=>0, x(0)=x, (3.4)

has a unique solution x(t)=S(t)x, and IS(H)Il < Me™*t for all
t= 0 with some positive numbers M and a.

Definition 3.2. The linear control system (3.4) is exponentially
stable if there exist numbers M> 0 and o > 0, such that:

Ix()ll< Me~lix,ll, Vt= 0.

Definition 3.3. The control system (3.2) is exactly null-
controllable in finite time if for every x, € X, there exist a number
T>0and an admissible control ut)e U={u(.) €
L, ([0, ), U)}, such that:

S(T)xo + [, S(T — s)Bu(s)ds = 0.

If we denote by Cr the set of null-controllable points in time T of
system (3.2) defined by:

Cp = {xo € X;S(Dxo — [ S(T — s)Bu(s)ds; u(.) eU},

the system (3.2) is exactly null-controllable in time T> 0 if
CT = X

If A is the generator of an analytic semigroup S(t) for T > 0,
then we can define the operator Wy € L(U, X) by:

WT=f0T S~1(s)Bu(s)ds,u(.) €U,

and we have Cy = Im Wr.

We state the following well-known controllability criterion for
the infinite-dimensional control system presented in Curtain and
Pritchard (1978) for reflexive Banach spaces and then in Xuejiao
and Zhenchao (1999) for non-reflexive Banach spaces having
the Radon-Nikodym property.

Proposition 3.1. (Curtain and Pritchard, 1978 and Xuejiao and

Zhenchao, 1999 ). Let X, U be Banach and S(t) the C,-semigroup

of A. Assume that X*, U* has the Radon-Nikodym property. The

following conditions are equivalent.

- _(%ont(;ol system (3.2) is exactly null-controllable in time

> 0.

- There exists c> 0, IW;"x*Il = clix*ll, v x* € X*.

— There exists ¢>0, IB*S*(s)x*lIZ = IS*(T)x*I,
VvV x* € X"

- If U is a Hibert space, the operator
Wr = fOT S~1(s)BB* S*~1(s)ds is strongly positive definite.
The operator Pe L(X, X*) is called a solution of the Lyapun-

ov equation if the following condition hold:

(PAx, x) + (Px, Ax) = —(Qx,x),V x € D(A). (3.5)

Note that, if A is bounded, then the above Eq. (3.5) has the
standard form:

A'Px + PAx = —Qx,

Remark 3.1. Datko (1970) showed that if A is exponentially stable
in Hilbert space, then the Lyapunov equation has a solution.

We present the equivalence between the solvability of the
Lyapunov equation and the exponential stability of the linear
system (3.4) in the following Proposition 3.2.

Proposition 3.2. (Phat and Kiet, 2002 ) If for some Q€
LSPD(X,X"), Pe LPD(X,X"), the Lyapunov equation holds,
then the operator A is exponentially stable. Conversely, if the
generator A is exponentially stable, then for any Q €

Vxe€EX
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LSPD(X, X*), there is a solution Pe LPD(X, X*) of the Lyapun-
ov equation:

AP +PA = —Q. (3.6)

Definition 3.4. The linear control system (3.2) is completely stabi-
lisable if for every a > 0, there exists a linear bounded operator
D:X— U and a number M> 0, such that the solution satisfies the
following condition:

Ix()l< Me~lix,ll, Vt= 0.

Note that, if the operator D and number M do not depend on
«a, then the complete stabilizability implies exponential stabilizabil-
ity in usual Lyapunov sense (Zabczyk, 1992). It is known from that
if the linear control system (3.2), where X and U are Hilbert spac-
es is completely stabilizable then it is exactly null-controllable in
finite time (Megan, 1975). Also, Phat and Kiet (2002) improved
this result in Banach spaces.

Proposition 3.3. If the linear control system (3.2) is completely
stabilisable then it is exactly null-controllable in finite time.

In the sequel, Phat and Kiet (2002) proved that the linear
control system (3.2) is exponentially stabilizable by linear feed-
back D:X— U, if it is null-controllable in finite time.

Proposition 3.4. If the linear control system (3.2) is exactly null-
controllable in finite time, then it is exponentially stabilizable.

We define the Lie derivative of a function V(x) along solu-
tions of (3.1) as:

V(x) = lim_g+ sup = (VItx,u)-V(X)
Now, we suppose the following assumptions.

(H1) The linear control system (3.2) is exactly null-
controllable in finite time and there exists a constant operator
D:X— U, such that a sufficient condition specially related to oper-
ator is presented in Phat and Kiet (2002) as the following: for any
Qe LSPD(X,X*): (Qx,x) =b; lxlI?, Vx € X, there exists
Pe LPD(X,X*), b,lIxl? < (Px,x) < IIPllxlI?, Vx€X,
where b,, b, > 0, which satisfies:

(H2) The perturbation F: R+x X — R+ verifies the following
estimation:

IF(t, )l < @@®Ixll + pt) +n, vt =0,vx € X,n =0,

where @ and p are non-negative continuous functions with
@ € L}(R+,R+) and p € LP(R+, R+) for some p€ [1, +0).
Next, sufficient conditions are presented to guarantee the
global existence and uniqueness of solutions of systems (3.1).
Further, we investigate the practical stabilizability of the evolution
equation using generalised Gronwall-Bellman inequality and
Lyapunov theory.
Theorem 3.1. Under assumptions (H1) and (H2) the closed-loop
system (3.1)-(3.3) have a unique solution, which is globally de-
fined for all t> t, and this system is globally practically uniformly
exponentially stable.
Proof. We break up the proof into two steps.
Step 1: Since F is locally Lipschitz continuous in x, uniformly in t,
it follows from Pazy (1983) that for every initial condition the
closed-loop equation possesses a unique mild solution on some
interval [ty,ty, + d] with § > 0. Indeed, integrating (3.1) , we
obtain the following for t€[t,, t, + J]:
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X({=S(t-to)xo* [, S(t = $)[Bu(s) + F(s,x(s))]ds.
Since B€ L(U, X), then:

X < M, lIxgll + M, (ftto 1B DI (s)Il +
M, lIx(s)Il + M3 +nds), (3.8)

where: M= sup{liIS(t —s)I:0 <t, <s<t<t+ 8},
M, = SUDte[tg 14 () Il and M5 = SUDte(ty o 461 () .
By applying Gronwall inequality (Tsinias, 1991, Lemma 2.7,
p42) to inequality (3.8), any solution of this equation is uniformly
bounded IIx(t)Il < M, (lIxyll + M5 +n) on an arbitrary time
interval [t, t, + 6]. Then, using Theorem 1.4 of Pazy (1983),
we have t, + & = oo, and so we get global existence.
Step 2: Consider a Lyapunov function: V(x)=(Px,x). Let us
compute the Lie derivative of V with respect to system (3.1) in a
closed-loop with the controller (3.3). For x€ D(A), we have
V(x)=(P%, x) + (Px, %). From (P(Ax),x) = (Ax, Px) and (3.7)
with the help of Cauchy-Schawtz inequality, we obtain the
following:

V(x) < —(Qx, x) + 2lIPIIF (t, x) lIxll
< -bylIxlIZ + 21PN (@@)lIxll + p(t) +n)lxI

< (1B + 2R00) y(x) + 2000 + 1) TG
Let z(x)=,/ V(%) , which implies that:
A0S (ot D (n(©) + ). (3.9)

These derivations hold for xeD(A)cX. If xgD(A), then
the solution x(t)€ D(A) and t— z(x(t)) is a continuously
differentiable function for all t= t, (for these properties of
solutions, see Theorem 3.3.3 in Henry (1981)). Thus, by the
mean value theorem we obtain that Eq.(3.9) holds for all
x€ X. Using Lemma 2.2, we have for all t=>t,

2= 7(x0) exp(—p
IIPIIM(p

b
'2||11>|| t_tO))+
t IPI
= fo (p(s)ds. We descriminate three cases:
1. If p=1, we get ftto(u(s)+n) exp(—L: (t-s))ds<
Il + 2||p||n.

IIPII Xp(IIPIIM(p)”XO I

exp(_zllpu (t-to))+ "PZII eXp(%)( [ ||1 2IIP1||n).

2. If pe (1,+00) and g> 0, such that + - =1, we have by

applying Holder inequality f (u(s)+n) exp(—2: (t-
21IPIl 2||P|In

s))ds< (—) allpll,

Therefore, for all t>t0, the solution x(t) verifies the

estimation lIx (DIl < /"PZI eXp("P"M(p)” Xoll exp(—5pL: (t-

t ))+% ex (IIPIIM(p)((iPII) ” ” 2|IP|IT])

3. If p=+oo. Then, we havef u(s) exp(—pd; (t-s))ds<
Il
One can get, forall t = t, IIx(DIl < \/f exp(
2

Then, for all t = t,, Ix(OI <

21IPln

1

IIPIIM
Yol
9k,
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Pl IIPIIM(p 2Pl ZIIPIIT]

exp(— zupu (t- to)) exp( )(— Il o - —).

We conclude that, the system (3.1) |n closed-loop with the
controller (3.3) is globally practically uniformly exponentially sta-
ble. This completes the proof. ]

As a consequence of Theorem 3.1, we have the following cor-

ollary.
Corollary 3.1. We consider the dynamical system (3.1). Assume
that (H1) is fulfilled and there exists a continuous function p : R+
— R+ with u € LP(R+, R+) for some pe€ [1,+o) , such that
IF(t, x)Il < p(t), vt = 0,vx € X. Then, the system (3.1) in a
closed-loop with the controller (3.3) is globally practically uniformly
exponentially stable.

We can state other assumptions to obtain the global exist-
ence, uniqueness and the practical stabilizability for the evolution
Eq. (3.1) under a restriction about the perturbed term bounded by
the sum of Holder continuous function and a Lipschitz function.

(H3) There exists a non-negative constant 0< a < 1, such
that the perturbation term F: R+x X — R+ satisfies the follow-
ing condition: IF(t,x)Il < @®)IxI* + o(t)Ixl,Vt=>0,Vx €
X, where @ and p are non-negative continuous functions with
o € L}(R+,R+) and @ € LP(R+, R+) for some p€ [1, + ).

Then, one has the following theorem.

Theorem 3.2. If assumptions (H1) and (H3) are fulfilled, then the
closed-loop system (3.1)-(3.3) have a unique solution, which is
globally defined for all t> t, and this system is globally practically
uniformly exponentially stable.

Proof. We break up the proof into two steps.

Step 1: Since F is locally Lipschitz continuous in x, uniformly in t,
it follows from Pazy (1983) that for every initial condition the
closed-loop equation possesses a unique mild solution on some
interval [to, to + 8] with § > 0. Indeed, integrating Eq.(3.1) ,
we obtain the following for t€[t,, to + J]:

X({}=S(t-to)xo* [, S(t = $)[Bu(s) + F(s,x(s))]ds.

Since Be L(U, X), then:

X < My lIxqll + M1(ftto IB IIDIIx(s)Il +
M, llx ()% + M3 lIx(s)llds), (3.10)

where: M; = {lIS(t—s)Il:0 <ty <s<t<t+ &},

M, = Supeefey, .o llp(t) land M5 = SUPtelty o 1s llo(t) Il.
By applying Lemmas 2.1 and 2.3 to inequality (3.10), any so-

lution of this equation is  unifomly bounded: lIx(t)ll <

o 1

21-aeM18UBIDIFM:) (M fixoll + (M;M,8(1 — ))™=%), on
an arbitrary time interval [t,, t, + &]. Applying Theorem 1.4 of
Pazy (1983), we have t, 4+ § = oo, and so we obtain global
existence.
Step 2: Define the function V:D(A)— R + by V(x)=(Px, x). Then,
the Lie derivative of V in t along the solution of the system (3.1) in
a closed-loop system with the controller (3.3) leads to
V(x)=(Px, x) + (Px,X) < —(Qx,x) + 2lIPIIF(t, x)lIx|l. Using
assumptions (H1) and (Hs) we get the following estimation:

by 2IIPIIG(t))

V(X)S("P”+ e V( 2||P|I<p(t)v( )_

\/—OL+1
Let9(x) = V(x)l_Ta, which implies that:

: _ (1-0) (by _ 2IIPlo(t) IPI(1-0) (L)
900 < 2 (upu b, )S(X) + Jb—2“+1 ’
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Using Lemma 2.2, we get:

IPI(1—a)Ng
Ix)<e b2

||p||(1 a)f

cx+1

b;(1-a)
(O(xg)exp(— 21—

( by (1-a) (t— s)) @(s)ds),

21IPIl

(t—ty) +

where N, = fo o(s)ds. We discriminate three cases:
1. If p=1, we get:

IPI(1-)Ng 1 (
IX)<e P2 (I(xo)exp(—

IIPII(1 )

— a)
oipr ()

@lly).

2

From Lemma 2.3, it follows that:

o IPINg [ [Pl
Ix(t)ll < 2T-ae b — lIx, |l
x(l < ae b2 b, Xoll exp 2|IPII — (t—t,)

+L<”P"(1‘°‘)”(p" )T“

2. If pe (1,+) and g> 0, such that % +$ =1, we have by
applying / inequality:

IPI(1-c)Ng by(1-)

I(x) < e bz (ﬁ(xo)exp(— 12||1>|| (t_tO))+
IPI(1—c) 20P1 2
e 1ol (o) )

Then, using Lemma 2.3, we have:
Ix(OI

_a_ IIPINg [|P|l b,
< 2T-ae b2 E”XOHeXp —m(t to)

o« IPINg

21—ae b2

1
IPI(L — a)llepll, 1 ( 21IPIl )—q(l—oo
J/b; N q(1 — b,

3. If p=too. Then, one has the following estimate:

IPING  [IIPII
Ix(t)ll < 2T-ae b2 ( b—IIXOII
2

1
exp (587 (= 1)) + 7 (e Il )2 ).

We deduce that, the system (3.1) in a closed-loop with the
controller (3.3) is globally practically uniformly exponentially sta-
ble. This ends the proof. m

For perturbed time-varying systems (3.1) in finite-dimensional

spaces, we also have the following consequence.
Corollary 3.2. (Ellouze, 2019) Assume that X=R™ , U=R™ and
the assumptions (H1) and (H3) are satisfied, then the system (3.1)
with the controller (3.3) is globally practically uniformly exponen-
tially stable.
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3.2 Feedback control of uncertain systems

Let X be a Banach space, X* has the Radon-Nikodym proper-
ty and U is a Hilbert space.
We consider the uncertain dynamical system:

{)’( = Ax+ Bu+ G(t,x,u), t = t,,
X(tO) = XO!

where x€ X is the system state, ue U is the control input, A is
the infinitesimal generator of the C,-semigroup S(t) on a Banach
space X, Be L(U, X) and G: R+x X x U — R+ is continuous in
t and locally Lipschitz continuous in x uniformly in t on bounded
intervals, that is, for every t; = 0 and constantc= 0, there is a
constant M(c, t;), such that for all x, ye X: lIxll < ¢, Iyl <
candforallte [0,t;], u € U with llull < citholds that:

IG(t, x,u) — G(t,y, Wl < M(c, t)lIx —yll.

Let x(t,xq,u) denote the state of a system (3.11) at moment
t> t, associated with an initial condition x, € X at t=t,and
inputue U.

We suppose the following assumption relating to system
(3.11).

(H4) The perturbation term G: R+x X X U — R+ satisfies

the following condition:

(3.11)

Ja,b > 0, IG(t,x,w)ll < allxll + bllull + d(t) + &, Vt >
0,vx € X, e = 0. (3.12)

where dis a non-negative continuous function with d € LP(R+,
R+) for some pe€ [1, +o0).

The following lemma proved sufficient conditions for the global
existence and uniqueness of solutions of system (3.11).
Lemma 3.1. Under assumption (H4), the closed-loop system
(3.3)- (3.11) have a unique solution which is globally defined for all
t= t,.
Proof. As G is locally Lipschitz continuous in x, uniformly in t, it
follows from Pazy (1983) that for every initial condition the closed-
loop equation possesses a unique mild solution on some interval
[to, to + 8] with & > 0. Indeed, integrating (3.11), we obtain the
following for t€[t,, to + 8]:

X(t)=S(t-t0)x0+ft2 S(t — s)[Bu(s) + G(s,x(s),u(s))]ds

Since Be L(U,X), then by applying Gronwall inequality
(Teschl, 2012, Lemma 2.7, p42), we have the following:

||X(t)|| < Ml(”XO” + M2 s +s)e M, 8(IIBI IIDII+a+bIIDII),

where: M;=  sup{lIS(t—s)l:0<t, <s<t<t+6} and
M; = SUDefty, .5 ld(t) Il on an arbitrary time interval [ty,t, +

§]. Now, Pazy (1983, Theorem 1.4) gives that and so we have
global existence. The proof is completed. [

The next theorem shows the practical stabilization of the sys-

tem (3.11) using the Lyapunov indirect method and Gronwall-
Bellman inequality.
Theorem 3.3. Assume that A is exponentially stable and the
assumption (H4) is satisfied. Let P, Qe LPD(X, X*) be the opera-
tors satisfying the Lyapunov Eq. (3.6) where P=P* and
(Qx, x) = AllxlI? for all x€ X, A > 0.Then, the nonlinear control
system is practically stabilizable by the feedback control u(t)=-
pB*Px(t) if:



§ sciendo

DOI 10.2478/ama-2021-0009
A—2allPll
2blIBINIPIZ

Proof. Let Pe LPD(X,X") be an operator which is a solution of
the Lyapunov Eq. (3.6). Define the Lyapunov function V:D(A)—
R + by V(x)=(Px, x). Noting that, there exists @ > 0 such that:

allxli? < V(x) < IPNIxI? -

(3.13)

Then, the derivative of V in t along the trajectories of system
(3.11) and using the chosen feedback control and the Lyapunov
equation is given as follows

V(x)=(Px,x) + (Px,x) = —(Qx, x) — p(PBB*Px,x) —
p(Px, BB*Px) + (PG(t, x, u), x) + (Px, G(t, X, u)).

Since P is self-adjoint, by assumption (H4) and condition
(3.13), we have for all t> t,:

V() < —kV(G0 + 22 (1) +€)y V9,

A—2bplIBIIPIZ=2allPll
- Pl > 0.

Let 9(x)=,/V(x). Then, 9(x) < ——{)( )+ —= (d(t) +
€),Vx EX,Vt=ty ApplyingLemma2.2, we obtam the fol-
lowing:

O(H)< D(x)e 7 [t ¢
Vit

where k=

IIPIl

p( (s =D)(d(s) +¢)ds

We distinguish three cases:
1. Ifp=1, we get:

Ix(OIl < /"" lxlle~50t0) + 22 (ldlly + 25, v £ > t

2. If pe (1,+) and g> 0, such that § +% =1, we have by
applying Holder inequality:

IPI K
Ix(DIl < |[— lixolle 2%
(04
1
L (Z)qndn +2) viext
a \ \gk LN A

3. 3. If p=too. Then, we obtain the following:

Ix(OIl < /"P lix lle 3t +2”P” (ndnm

We deduce that, the system (3.11) is practically stabilizable.
This ends the proof. [

2¢€
+Z) vzt

In the following, we derive some sufficient conditions that
guarantee practical stabilizability of system (3.11) in the case A is
not exponentially stable and it is a generator of bounded C,-
semigroup, but the associated linear control system (3.2) is ex-
actly null-controllable in finite time and the nonlinear perturbation
satisfies a condition.

Theorem 3.4. Assume that the linear control system (3.2) is ex-
actly null-controllable in finite time, then the system (3.11) is prac-
tically stabilizable for some appropriate numbers a, b satisfying
the condition (3.12).

Proof. The linear control system is exactly null-controllable in
finite time, then from Proposition 3.4 there is an operator De
L(X, U), such the operator W;,=A+BD is exponentially stable. Let

acta mechanica et automatica, vol.15 no.2 (2021)

P,Q € LPD(X, X*) be the operators satisfying the Lyapunov Eq.
(3.6) where P=P*and (Qx,x) = AllxlI?for all x€ X and A > 0.
Consider the Lyaunov function V(x)=(Px, x). We have:

allxlz2 < V(x) < IPHIxIZ, o > 0.

The Lie derivative of V along the trajectories of system (3.11)
is given as follows:

V(x) < — MIxl? + 2(PG(t, x, Dx), x)
< —nlxll? + 2 IPI(d(D) + £),

where 1 = A — 2(allPll + blDIl). We take a, b> 0, such that
n > 0, thatis, allPll + bIDIl < 2-

Let 9(x m Then:
8 < — Lo )+”}"(d(t) +E)LVXEX VSt
Using Lemma 2.2, we have:
I(X)< 9(xy)e” zupu(t t°)+|P"f
g)ds, Vt =t
We distinguish three cases:

xp (5 (s — ©)(d(s) +

21IPIl

1. If p=1, we have for all t= t,:

Pl LM ey |, IPI
IO < [——=lxoll e 2P 4+ — (Il

2IIPlle

LV t=>tg-

2. If pe (1,+o0) and g> 0, such that % +$ =1, we obtain by
applying Holder inequality:

fupn 0
Ix(OI < [— lix,ll e zmPrt—t)
(04

1
ipll [ /21PING 21IPlle
+— ( ) Idil, +

3. If p=too. Then, we have:

I o
Ix(DIl < [— lixoll e ziPrtt)
«

21IP1I2

(Idll, +€),Vt=tg -
We deduce that, the system (3.11) is practically stabilizable.
This finishes the proof. [ |

Remark 3.2. The above results generalise theorems of stabiliza-
bility in Phat and Kiet (2002) with d(t)=¢ =0.

4. EXAMPLES

In this section, we give some examples to illustrate the effec-
tiveness of the results obtained in the present paper.

Example 4.1. We consider the controlled metal bar:;
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(@Y _ a%xGy [ AJu(® + 5 x(@ 0 +

at  a2g 1+t2
1+t

(1+t2)(@+IxE oI’
I 0x 0x
ka_( 0,v)=0= a_(;(l’ t), x((,0) =%, (), t=0,

(4.1.)

where x({,t) represents the temperature at position at time t
and x, () represents the initial temperature profile and u(t) rep-
resents the addition of heat along the bar. The two boundary
conditions state that there is no heat flow at the boundary, and
thus the bar is insulated. Let X=12(0,1) and U=C. Equation (4.1)

can be rewritten as (3.1), where A="’2"—“§“ with D(A)=(he

9%h
L2(0,1),h, CAN absolutely continuous, 777 € LZ(O 1) and
—(0) =0= —(1)} B=1[l 1] and F(t, X) X(Z t) +
>
1+t

A+ A+IxQOl
A possesses an orthonormal basis of eigenvector ¢, (7)) = 1

and ¢,(0Q) =+/2 cos (nmQ), n > 1. Furthermore, the semi-
group (S(t)) =, generated by A is given by:

S(tx= X0 e T (x, @) P

Using Proposition 3.1, it is easy to see that the nominal system of
(4.1) is exactly null-controllable in finite time. Moreover, the as-

sumption (H2) is satisfied with n=0 and ¢(t) = T

— (R+,R+) and

u € LP(R+, R+) for some pe [1, +o0). Then, all hypotheses of
Theorem 3.1 are satisfied and the controlled heat Eq. (4.1) is
practically stabilizable.

Example 4.2. We consider the controlled perturbed heat equation:

ax((,t)_azx((,t) 2+t2
at 8% 1+t2

x(0,t) = 0 = x(m,t), x(4,0) =%, (0, t=0,

u(®) +x@ 0 + e L 02

where x(, t) represents the temperature at position ¢ € [0, 1]
time tand x, () represents the initial temperature profile.

Let X=L2(0,7) and U=C. It is useful to formulate the equation
(4. 2) as an abstract differential equation of the form (3.11), where

A2 X(c 9 with D(A) ={ h € L2(0, n),% is absolutely continuous
— E LZ(O m) and h(O) =0=h(m)}, B=l and
(t (G U)=x(3, 1) + —u(t)* e‘tl[

A possesses an orthonormal basis of eigenvector @, (0) =
ﬁsin(n(), n= 0. Furthermore, the semigroup (S(t))>¢, gen-
erated by A is given by:

SE=Zr1 €™ (% @) P

Obviously, S(t) is exponentially stable. Therefore, A is expo-
nentially stable. Moreover, G satisfies the assumption (H4), just
take a=1,b=1,e = 0and d (1) =ﬂ7 e™t, is a non-negative contin-
uous function, with de LP(R+,R+) for some pe [1, +0).
Consequently, by applying Theorem 3.3, the controlled heat
Eq. (4.2) is practically stabilizable.
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5. CONCLUSION

Practical stabilization of infinite-dimensional evolution equa-
tions in Banach spaces has been investigated. Moreover, suffi-
cient conditions have been derived to guarantee the practical
stabilization of a class of uncertain systems in Banach spaces.
lllustrative examples are given to indicate significant improve-
ments and the application of the results.
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