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Abstract: This paper investigates the notion of practical feedback stabilization of evolution equations satisfying some relaxed conditions 
in infinite-dimensional Banach spaces. Moreover, sufficient conditions are presented that guarantee practical stabilizability of uncertain 
systems based on Lyapunov functions. These results are applied to partial differential equations. 
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1. INTRODUCTION 

In the literature on control theory of time-varying dynamical 
systems, controllability and stabilizability are the qualitative control 
problems that play an important role in the systems and have 
attracted many researchers (Damak et al., 2016; Ikeda et al., 
1972; Phat and Ha, 2008; Phat, 2001, 2002; Phat and Kiet, 2002). 
The theory was first introduced by Kalman et al. (1963) for the 
finite dimensional time-invariant systems. Furthermore, the theory 
which related to exponential stability was first introduced by Won-
ham (1967). Lyapunov function approach and the method based 
on spectral decomposition are the most widely used techniques 
for studying stabilizability of special classes of control systems, 
see for example Kobayashi (1989) and Tsinias (1991). In the 
infinite-dimensional control systems, the investigation of practical 
stabili-zation is more complicated and requires more sophisticated 
tech-niques. The practical stabilization is to find the state feed-
back candidate such that the solution of the closed-loop system is 
practically exponentially stable in the Lyapunov sense in which the 
origin is not necessary to be an equilibrium point. In this case, 
Damak et al. (2016) proved the practical feedback stabilization of 
the time-varying control systems in Hilbert spaces where the 
nominal system is a linear time-varying control system globally 
null controllable and the perturbation term satisfies some condi-
tions. Kalman et al. (1963) and Wonham (1967) have shown that 
in the finite-dimensional autonomous control system, if the system 
is null controllable in finite time, then it is stabilizable. But it does 
not hold for the converse. Moreover, if the system is completely 
stabilizable, then it is null controllable in finite time. The results of 
stabilizability for the finite-dimensional systems can be general-
ized into infinite-dimensional systems. For time-invariant control 
systems in Banach spaces, Phat and Kiet (2002) defined an 
equivalence between solvability of the Lyapunov equation and 
exponential stability of linear system. Based on the Lyapunov 
theorem, a relationship between stabilizability and exact null 
controllability of linear time-invariant control systems is estab-
lished. Moreover, they gave the exponential stabilizability of a 

class of nonlinear control systems. In recent years, non-
autonomous differential equations on infinite-dimensional spaces 
have been studied by many researchers, see the references 
Damak and Hammami (2020), Damak (2021), Chen et al. (2020a, 
2020b, 2020c, 2021) and Chen (2021) for more details. In the 
study by Chen et al. (2020b), sufficient conditions of existence of 
mild solutions and approximate controllability for the desired 
problem are given by introducing a new Green’s function and 
constructing a control function involving Gramian controllability 
operator. 

In this paper, we extend the results of Pazy (1983) and Phat 
and Kiet (2002) to discuss the problem of practical stabilization for 
evolution equations in Banach spaces. Based on the exact null 
controllability assumption of the linear control system, sufficient 
conditions for the stabilizability are established by solving a 
standard Lyapunov equation. Further, the nonlinear perturbation 
term is locally Lipschitz continuous and satisfies some appropriate 
growth conditions. A feedback controller that assures global prac-
tical uniform exponential stability of the closed-loop system has 
been proposed, that is, the solutions of the closed-loop system 
converge towards an arbitrary small neighbourhood of the origin. 

The paper is organized as follows: Section 2 briefly introduces 
some notations and necessary preliminaries. Section 3 presents 
the required assumptions and the statement of the main results. 
Section 4 presents illustrative examples, which shows the im-
portance of this study. Section 5 provides conclusion of this study. 

2. PRELIMINARIES 

Throughout this paper, we adopt the following notations R+ 
and X. R+ denotes the set of all non-negative real numbers and X 
denotes an infinite-dimensional Banach space with the norm ǁǁ. 

Let X∗ be the topological dual space of X and U infinite-
dimensional Banach space. Let 〈𝑦∗, 𝑥〉 denote the value of y at x. 
L(X) (respectively L(X,Y)) denotes the Banach space of all linear 
bounded operators mapping X  into X (respectively, X into Y) 
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endowed with the norm ǁTǁ=supx∈X
ǁTxǁ

ǁxǁ
∙ 

 The domain, the image, the adjoint and the inverse operator 
of an operator A are denoted as D(A), ImA, A∗ and A−1 respec-
tively. Everywhere below A is a linear operator in X with domain 
D(A), generating a strongly continuous semigroup S(t), that is: 

A=limh→0
S(h)−I

h
,  

in the strong topology. L2([t, s], X) denotes the set of all strongly 

measurable L2 integrable and X valued functions on [t, s].  Let 
Q∈L(X,X∗) be a duality operator. We recall that the operator Q is 

positive definite in X if 〈Qx, x〉 ≥0 for arbitrary x∈ X and 
〈Qx, x〉 >0 for x ≠ 0.  

We will denote by LPD(X,X∗)  and LSPD(X,X∗)   the set of all 
linear bounded positive definite and strongly positive definite 

operators mapping X into X∗, respectively. Also, we define: 

 Lp(R+, R+) is the set of functions positive and integrable with 

pth power on R+ where p ≥ 1 endowed with the norm  

ǁϕǁp=(∫ ϕp
+∞

0
)
1

p    for ϕ ∈ Lp(R+, R+). 
 L∞(R+, R+) is the set of all measurable functions from R+ to R+ 

which are essentially bounded endowed with the norm   
 ǁϕǁ∞=supt∈Rϕ(t) for ϕ ∈ L∞(R+, R+). 

 1[ϑ,ζ]={
1,   si    ϑ ≤ x ≤ ζ ,
0 ,         elsewhere.

 

We consider the following system: 

{
ẋ = F(t, x, u),    t ≥ t0 ≥ 0,

x(t0) = x0,
                      (2.1) 

where x ∈ X  is the system state, u ∈ U is the control input and 

F: R+× X × U → R+  is a given function. 
Definition 2.1. System (2.1) is practically stabilizable if there 
exists a continuous feedback control u : X → U, such that system 
(2.1) with u(t) = u(x(t)) satisfies the following properties. 

 For   any  initial  condition x0 ∈ X, there  exists  a  unique  mild 
solution  x(t, x0) defined on R+ .  

 There  exist  positive  scalars ω, k, and r, such that the 
solution of the system  (2.1) satisfies the following: 

ǁx(t)ǁ ≤ kǁx0ǁ𝑒−ω(t−𝑡0)
 

+ r, ∀t ≥ t0 ≥ 0. 

When (i) and (ii) are satisfied, we say that Eq. (2.1) with u(t) = 
u(x(t)) is globally practically uniformly exponentially stable. 

Definition   2.2.  (Diesel and Uhl Jr, 1977). A Banach X∗ has the 
Radon-Nikodym property if: 

L2([0,T],X∗)= (L2([0, T], X))
∗. 

In the proof of the mains results, we shall use the following 
lemmas. 
Lemma  2.1.  (Nonlinear generalization of Gronwall’s inequality, 
Zhoo, 2017). 

Let θ be a non-negative function on R+, that satisfies the fol-
lowing integral inequality:  

θ(t)≤ 𝜈+∫ (
t

t0
χ(s)θ(s) +  σ(s)θα  (s))ds,  ν≥ 0,      

0 ≤ α < 1, 𝑡 ≥ t0, where χ and σ are non-negative continuous 
functions. Then: 

𝜃(𝑡) ≤ [ν1−αe
(1− α) ∫ χ(s)ds

t
t0 + (1

−  α)∫ σ(s)e(1−α) ∫ χ(r)dr
t
s ]

1
1−α

t

t0

 

Lemma 2.2. (Generalized Gronwall-Bellman Inequality, Dragomir,  
2002). 

Let λ, ρ : R+ → R be continuous functions and ϕ : R+ → R+ 
is a function, such that:  

ϕ̇(t)≤λ(t)ϕ(t)+ρ(t), ∀t≥ t0.   

Then, we have the following inequality: 

ϕ(t)≤ ϕ(𝑡0)e
∫  λ(v)dv
𝑡
𝑡0 +∫ 𝑒∫  λ(v)dv

𝑡
𝑠

𝑡

𝑡0
ρ(s)ds. 

Lemma  2.3.  Let  a,b≥ 0 and  p ≥ 1. Then: 

(a + b)p ≤ 2p−1(ap+bp). 

3. MAIN RESULTS 

In this section, we shall state and prove our main results. 

3.1 Practical stabilization of infinite-dimensional evolution 
equations 

The purpose of this subsection is to establish the practical 
stabilization of evolution equations in Banach spaces. Based on 
the exact null-controllability in finite time of the nominal system 
whose origin is an equilibrium point, a stabilizing controller for the 
nonlinear system is then synthesized that guarantees the uniform 
exponential convergence to a neighborhood of the origin. This 
leads us to address the problem of practical stability of time-
varying perturbed systems. 

Consider infinite-dimensional evolution equations of the 
follwing form:  

{
ẋ = Ax + Bu + F(t, x),

x(t0) = x0,
                     (3.1) 

where x ∈ X  is the system state, u ∈ U is the control input, X is 
a Banach space, X∗ has the Radon-Nikodym property and U is a 

Hilbert space. The operator A:D(A)⊂ X→ 𝑋 is assumed to be the 

infinitesimal generator of the 𝐶0-semigroup S(t) on X, B∈ L(U, X) 
and the function F: R+× X → R+  is continuous in t and locally 
Lipschitz continuous in x, that is for every 𝑡1 ≥ 0 and constant 

c≥ 0, there is a constant M(c, 𝑡1), such that: 

ǁF(t,u)-F(t,v)ǁ≤ M(c, t1) ǁu-vǁ 

holds for all u, v∈ 𝑋, with ǁuǁ ≤ c, ǁvǁ ≤ c and t∈ [0, 𝑡1]. 
This system is seen as a perturbation of the nominal system: 

{
ẋ = Ax + Bu,
x(0) = x0,

                                    (3.2) 

Next, we are interested in suitable feedback of the for the follow-
ing: 

u(t) = Dx(t),                                       (3.3) 

where D∈ L(X, U). 
Let x(t,x0,u)  denote the state of a system (3.1)  at moments 

t≥ t0 ≥ 0 associated with an initial condition x0 ∈ X at t=t0 and 
input u∈ U. 

Now, we recall the definition of the generator of an exponen-
tially stable semi-group as well as that of the exponential stability 
(Curtain and Zwart, 1995). 
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Definition 3.1.  The operator A generates an exponentially stable 
semigroup S(t) if the initial value problem: 

 𝑥̇=Ax,             t≥ 0,    x(0)=𝑥0                                                 (3.4) 

has a unique solution x(t)=S(t)x0 and ǁS(t)ǁ ≤ Me−αt for all  

t≥ 0 with some positive numbers M and α.  
Definition 3.2. The linear control system (3.4) is exponentially 
stable if there exist numbers M> 0 and α > 0,  such that: 

ǁx(t)ǁ≤ Me−αtǁx0ǁ,   ∀ t ≥ 0. 

Definition 3.3.  The control system (3.2) is exactly null-

controllable in finite time if for every x0 ∈ X,  there exist a number 
T> 0 and an admissible control u(t) ∈ U = {u(. ) ∈
L2([0,∞), U)}, such that: 

S(T)x0 + ∫ S(T − s)Bu(s)ds = 0.
T

0
 

If we denote by CT the set of null-controllable points in time T of 
system (3.2) defined by:                                                               
 

CT = {x0 ∈ X; S(T)x0 − ∫ S(T − s)Bu(s)ds;  u(. ) ∈
T

0
U}, 

 
the system (3.2) is exactly null-controllable in time T> 0 if 

CT = X.  
If A is the generator of an analytic semigroup S(t) for T > 0,  

then we can define the operator WT ∈ L(U, X) by: 

WT=∫ S−1(s)Bu(s)ds, u(. ) ∈
T

0
U,    

and we have  CT = Im WT. 
We state the following well-known controllability criterion for 

the infinite-dimensional control system presented in Curtain and  
Pritchard  (1978)  for reflexive Banach spaces and then in Xuejiao 
and  Zhenchao  (1999) for non-reflexive Banach spaces having 
the Radon-Nikodym property. 
Proposition 3.1.  (Curtain  and  Pritchard, 1978 and Xuejiao and  

Zhenchao, 1999 ). Let X, U be Banach and S(t) the C0-semigroup 
of A. Assume that X∗, U∗ has the Radon-Nikodym property. The 
following conditions are equivalent.  
 Control system (3.2) is exactly null-controllable in time 

T> 0. 
 There exists c> 0, ǁWT

∗x∗ǁ ≥ cǁx∗ǁ, ∀ x∗ ∈ X∗. 
 There exists c> 0, ǁB∗S∗(s)x∗ǁ2 ≥ ǁS∗(T)x∗ǁ, 
∀ x∗ ∈ X∗. 

 If U is a Hilbert space, the operator 

WT = ∫ S−1(s)BB∗
T

0
S∗−1(s)ds  is strongly positive definite. 

The operator P∈ L(X, X∗)  is called a solution of the Lyapun-
ov equation if the following condition hold: 

〈PAx, x〉 + 〈Px, Ax〉 = −〈Qx, x〉, ∀ x ∈ D(A).                    (3.5) 

Note that, if A is bounded, then the above Eq. (3.5) has the 
standard form: 

A∗Px + PAx = −Qx, ∀ x ∈ X. 

Remark 3.1. Datko (1970) showed that if A is exponentially stable 
in Hilbert space, then the Lyapunov equation has a solution. 

We present the equivalence between the solvability of the 
Lyapunov equation and the exponential stability of the linear 
system (3.4) in the following Proposition 3.2. 

Proposition 3.2.   (Phat  and  Kiet, 2002 )  If for some Q∈
LSPD(X, X∗), P∈  LPD(X, X∗), the Lyapunov equation holds, 
then the operator A is exponentially stable. Conversely, if the 

generator A is exponentially stable, then for any Q ∈

LSPD(X, X∗), there is a solution P∈  LPD(X, X∗) of the Lyapun-
ov equation: 

 A∗P + PA = −Q.                    (3.6) 

Definition 3.4. The linear control system (3.2) is completely stabi-

lisable if for every α > 0, there exists a linear bounded operator 

D:X→ U and a number M> 0 , such that the solution satisfies the 
following condition: 

 ǁx(t)ǁ≤ Me−αtǁx0ǁ,   ∀ t ≥ 0. 

 Note that, if the operator D and number M do not depend on 
α, then the complete stabilizability implies exponential stabilizabil-
ity in usual Lyapunov sense (Zabczyk, 1992). It is known from that 
if the linear control system (3.2), where X and U are Hilbert spac-
es is completely stabilizable then it is exactly null-controllable in 
finite time (Megan, 1975). Also, Phat  and  Kiet (2002)   improved 
this result in Banach spaces. 
Proposition 3.3.  If the linear control system (3.2)  is completely 
stabilisable then it is exactly null-controllable in finite time.  

In the sequel, Phat  and  Kiet (2002)  proved that the linear 
control system (3.2) is exponentially stabilizable by linear feed-

back D:X→ U, if it is null-controllable in finite time.  
Proposition 3.4. If the linear control system (3.2)  is exactly null-
controllable in finite time, then it is exponentially stabilizable.  

 We  define the Lie derivative of a function V(x)  along solu-
tions of (3.1) as:  

V̇(x) = limt→0+ sup
1

t
(V(x(t,x,u))-V(x)). 

Now, we suppose the following assumptions.                     

(H1) The linear control system (3.2)  is exactly null-
controllable in finite time and there exists a constant operator 

D:X→ U, such that a sufficient condition specially related to oper-
ator is presented in Phat and Kiet (2002)  as the following: for any 

Q∈ LSPD(X, X∗): 〈Qx, x〉 ≥ b1 ǁx ǁ 2, ∀ x ∈ X, there exists 

P∈  LPD(X, X∗),  b2ǁxǁ
2 ≤ 〈Px, x〉 ≤ ǁPǁǁxǁ2, ∀ x ∈ X, 

where  𝑏1, 𝑏2 > 0,  which satisfies: 

 AD
∗P + PAD = −Q.                         (3.7)                    

(H2) The perturbation F: R+× X → R+  verifies the following 
estimation: 

 ǁF(t, x)ǁ ≤ φ(t)ǁxǁ + μ(t) + η, ∀ 𝑡 ≥ 0, ∀𝑥 ∈ 𝑋, 𝜂 ≥ 0,  

where φ and μ are non-negative continuous functions with 

φ ∈ L1(R+, R+) and μ ∈ Lp(R+, R+) for some p∈ [1, +∞).  
Next, sufficient conditions are presented to guarantee the 

global existence and uniqueness of solutions of systems (3.1). 
Further, we investigate the practical stabilizability of the evolution 
equation using generalised Gronwall-Bellman inequality and 
Lyapunov theory.  
Theorem 3.1. Under assumptions (H1) and (H2) the closed-loop 
system (3.1)-(3.3) have a unique solution, which is globally de-

fined for all t≥ t0 and this system is globally practically uniformly 
exponentially stable. 

Proof. We break up the proof into two steps. 
Step 1: Since F is locally Lipschitz continuous in x, uniformly in t, 
it follows from Pazy  (1983)  that for every initial condition the 
closed-loop equation possesses a unique mild solution on some 

interval [𝑡0, 𝑡0 + 𝛿] with 𝛿 > 0. Indeed, integrating (3.1) , we 

obtain the following for t∈[𝑡0, 𝑡0 + 𝛿]: 
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x(t)=S(t-t0)x0+∫ S(t − s)[Bu(s) + F(s, x(s))]ds
t

t0
. 

Since B∈ L(U, X), then: 

ǁx(t)ǁ ≤ M1ǁx0ǁ +M1(∫ ǁB
t

t0
ǁǁDǁǁx(s)ǁ +

                  M2ǁx(s)ǁ +M3 +ηds),                              (3.8) 

where: 𝑀1= sup{ǁS(t − s)ǁ: 0 ≤ t0 ≤ s ≤ t ≤ t +  δ}, 
𝑀2 = sup𝑡∈[𝑡0,𝑡0+𝛿]

ǁφ(t) ǁ  and 𝑀3 = sup𝑡∈[𝑡0,𝑡0+𝛿]
ǁμ(t) ǁ. 

By applying Gronwall inequality (Tsinias, 1991, Lemma 2.7, 
p42) to inequality (3.8), any solution of this equation is uniformly 
bounded ǁx(t)ǁ ≤ M1(ǁx0ǁ +M3 +η) on an arbitrary time 

interval  [𝑡0, 𝑡0 + 𝛿]. Then, using Theorem 1.4 of Pazy  (1983) , 

we have 𝑡0 + 𝛿 =  ∞, and so we get global existence. 
Step 2: Consider a Lyapunov function: V(x)=〈Px, x〉.  Let us 
compute the Lie derivative of V with respect to system (3.1) in a 

closed-loop with the controller (3.3). For x∈ D(A), we have                                                                          

V̇(x)=〈Pẋ, x〉 + 〈Px, ẋ〉. From 〈P(Ax), x〉 = 〈Ax, Px〉 and (3.7)  
with the help of Cauchy-Schawtz inequality, we obtain the 
following: 

V̇(x) ≤ −〈Qx, x〉 + 2ǁPǁǁF(t, x)ǁxǁ                         
 ≤  -b1ǁxǁ

2 + 2ǁPǁ(φ(t)ǁxǁ + μ(t) + η)ǁxǁ      

≤ ( b1
ǁPǁ
 + 2ǁPǁ(φ(t)

b2
)V(x) + 2ǁPǁ

√b2
(μ(t) + η)√V(x) .   

Let z(x)=√V(x) , which implies that:                        

ż(x)≤ (- b1
2ǁPǁ

+
2ǁPǁφ(t)

b2
)z(x)+

ǁPǁ

√b2
(μ(t) + η).        (3.9)   

These derivations hold for x∈D(A)⊂X. If x∉D(A), then 
the solution x(t)∈ D(A) and t→ z(x(t)) is a continuously 

differentiable function for all t≥ t0 (for these properties of 
solutions, see Theorem 3.3.3 in Henry  (1981)). Thus, by the 
mean value theorem we obtain that Eq.(3.9) holds for all 

x∈ X. Using Lemma 2.2, we have for all 𝑡 ≥ t0                                               

z(x)≤ z(x0) exp (
ǁPǁMφ

b2
)exp (-

b1

2ǁPǁ
(t − t0))+ 

exp (
ǁPǁMφ

b2
) ∫

ǁPǁ

√b2
(μ(s) + η)

t

t0
exp(− b1

2ǁPǁ
 (t-s))ds, where 

Mφ = ∫ φ(s)ds.
∞

0
  We descriminate three cases: 

1. If p=1, we get ∫ (μ(s) + η)
t

t0
 exp(− b1

2ǁPǁ
 (t-s))ds≤

ǁμǁ1 +
2ǁPǁη

b1
.  

Then, for all 𝑡 ≥ 𝑡0, ǁx(t)ǁ ≤ √
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)ǁx0ǁ 

exp(− b1
2ǁPǁ

 (t-t0))+ 
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)( ǁμǁ1 +

2ǁPǁη

b1
).                

2. If p∈ (1,+∞) and q> 0, such that 
1

𝑃
+

1

𝑞
= 1,  we have by 

applying Hölder inequality ∫ (μ(s) + η)
t

t0
 exp(− b1

2ǁPǁ
 (t-

s))ds≤ (
2ǁPǁ

b1q
)
1

qǁμǁp +
2ǁPǁη

b1
.                                 

Therefore, for all 𝑡 ≥ 𝑡0, the solution x(t) verifies the 

estimation ǁx(t)ǁ ≤ √
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)ǁx0ǁ exp(− b1

2ǁPǁ
 (t-

t0))+ 
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)((

2ǁPǁ

b1q
)
1

qǁμǁp +
2ǁPǁη

b1
).  

3. If p=+∞. Then, we have ∫ μ(s)
t

t0
 exp(− b1

2ǁPǁ
 (t-s))ds≤

2ǁPǁη

b1
 

ǁμǁ∞.  

One can get, for all 𝑡 ≥ 𝑡0   ǁx(t)ǁ ≤ √
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)ǁx0ǁ 

exp(− b1
2ǁPǁ

 (t-t0))+ 
ǁPǁ

b2
 exp (

ǁPǁMφ

b2
)(
2ǁPǁ

b1
 ǁμǁ∞  +

2ǁPǁη

b1
). 

We conclude that, the system (3.1) in closed-loop with the 
controller (3.3) is globally practically uniformly exponentially sta-
ble. This completes the proof.             ∎        

As a consequence of Theorem 3.1, we have the following cor-
ollary.                                             
Corollary 3.1. We consider the dynamical system  (3.1). Assume 

that (H1) is fulfilled and there exists a continuous function μ : R+ 
→ R+ with μ ∈ Lp(R+, R+) for some p∈ [1, +∞) , such that                                                                   

 ǁF(t, x)ǁ ≤ μ(t), ∀ t ≥ 0, ∀x ∈ X. Then, the system (3.1) in a 
closed-loop with the controller (3.3) is globally practically uniformly 
exponentially stable.                                                

We can state  other assumptions to obtain the global exist-
ence, uniqueness and the practical stabilizability for the evolution 
Eq. (3.1)  under a restriction about the perturbed term bounded by 
the sum of Hölder continuous function and a Lipschitz function.                                               

(H3) There exists a non-negative constant 0< 𝛼 < 1, such 
that the  perturbation term  F: R+× X → R+  satisfies the follow-

ing condition: ǁF(t, x)ǁ ≤ φ(t)ǁxǁα + σ(t)ǁxǁ, ∀ t ≥ 0, ∀x ∈
X, where φ and μ are non-negative continuous functions with 
σ ∈ L1(R+, R+) and φ ∈ Lp(R+, R+) for some p∈ [1, +∞).                                   

Then, one has the following theorem.        
Theorem 3.2.  If assumptions (H1) and (H3) are fulfilled, then  the 
closed-loop system (3.1)-(3.3) have a unique solution, which is 

globally defined for all t≥ t0 and this system is globally practically 
uniformly exponentially stable.                         

Proof. We  break up the proof into two steps. 
Step 1: Since F is locally Lipschitz continuous in x, uniformly in t, 
it follows from Pazy  (1983)  that for every initial condition the 
closed-loop equation possesses a unique mild solution on some 

interval [𝑡0, 𝑡0 + 𝛿]  with 𝛿 > 0. Indeed,  integrating Eq.(3.1) ,  

we obtain the following for t∈[𝑡0, 𝑡0 + 𝛿]: 

x(t)=S(t-t0)x0+∫ S(t − s)[Bu(s) + F(s, x(s))]ds
t

t0
. 

Since B∈ L(U, X), then: 

ǁx(t)ǁ ≤ M1ǁx0ǁ +M1(∫ ǁB
t

t0
ǁǁDǁǁx(s)ǁ +

 M2ǁ𝑥(𝑠)ǁ
𝛼 +M3ǁx(s)ǁds),                                 (3.10)                    

where: 𝑀1 = {ǁS(t − s)ǁ: 0 ≤ t0 ≤ s ≤ t ≤ t +  δ},    
𝑀2 = sup𝑡∈[𝑡0,𝑡0+𝛿]

ǁφ(t) ǁ and 𝑀3 =  sup𝑡∈[𝑡0,𝑡0+𝛿]
ǁσ(t) ǁ.  

By applying Lemmas 2.1 and 2.3  to inequality (3.10), any so-
lution of this equation is  unifomly bounded:  ǁx(t)ǁ ≤

2
α

1−αeM1δ(ǁBǁǁDǁ+M3)(M1ǁx0ǁ + (M1M2δ(1 − α))
1

1−α), on 

an  arbitrary time interval [𝑡0, 𝑡0 + 𝛿].  Applying Theorem 1.4 of 

Pazy (1983), we have 𝑡0 + 𝛿 = ∞, and so we obtain global  
existence. 
Step 2: Define the function V:D(A)→ R +  by V(x)=〈Px, x〉. Then, 
the Lie derivative of V in t along the solution of the system (3.1) in 
a closed-loop system with the controller (3.3)  leads to                                                             
V(x)=〈Pẋ, x〉 + 〈Px, ẋ〉 ≤ −〈Qx, x〉 + 2ǁPǁǁF(t, x)ǁxǁ.  Using 
assumptions (H1) and (H3)  we get the following estimation:   

V̇(x)≤ (-
b1

ǁPǁ
+
2ǁPǁσ(t)

b2
)V(x)+

2ǁPǁφ(t)

√b2
α+1 V(x)

α+1

2 . 

Let ϑ(x) = V(x)
1−α

2 , which implies that: 

ϑ̇(x) ≤ −
(1−α)

2
(
b1

ǁPǁ
−

2ǁPǁσ(t)

b2
) ϑ(x) +

ǁPǁ(1−α)φ(t)

√b2
α+1 ,  
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Using  Lemma 2.2 ,  we get:  

ϑ(x) ≤ e
ǁPǁ(1−α)Nσ

b2 (ϑ(x0)exp (−
b1(1−α)

2ǁPǁ
(t − t0) +

ǁPǁ(1−α)

√b2
α+1 ∫ exp (−

b1(1−α)

2ǁPǁ
(t − s))φ(s)ds),

t

t0
   

where Nσ = ∫ σ(s)ds.
∞

0
  We discriminate three cases: 

1. If  p=1, we get: 

ϑ(x) ≤  e
ǁPǁ(1−α)Nσ

b2 (ϑ(x0)exp (−
b1(1 − α)

2ǁPǁ
(t − t0)

+
ǁPǁ(1 − α)

√b2
α+1 ǁφǁ1). 

From Lemma 2.3, it follows that:                                

ǁx(t)ǁ ≤ 2
α
1−αe

ǁPǁNσ
b2 (√

ǁPǁ

b2
ǁx0ǁ exp (−

b1
2ǁPǁ

(t−t0))

+
1

√b2
(
ǁPǁ(1 − α)

√b2
α+1 ǁφǁ1)

1
1−α

 ). 

2. If  p∈ (1,+∞) and q> 0,  such that 
1

P
+

1

q
= 1,  we have by 

applying / inequality: 

 𝜗(𝑥) ≤ e
ǁPǁ(1−α)Nσ

b2 (ϑ(x0) exp (−
b1(1−α)

2ǁPǁ
(t − t0)) + 

ǁPǁ(1−α)

√b2
α+1  ǁφǁp(

2ǁPǁ

q(1−α)b1
)
1

q  ).  

Then, using Lemma 2.3, we have: 
ǁx(t)ǁ

≤ 2
α
1−αe

ǁPǁNσ
b2 √

ǁPǁ

b2
ǁx0ǁ exp (−

b1
2ǁPǁ

(t − t0))

+
2

α
1−αe

ǁPǁNσ
b2

√b2
(
ǁPǁ(1 − α)ǁφǁp

√b2
α+1 )

1
1−α  (

2ǁPǁ

q(1 − α)b1
)

1
q(1−α)

. 

3. If p=+∞. Then, one has the following estimate: 

ǁx(t)ǁ ≤ 2
α
1−αe

ǁPǁNσ
b2 (√

ǁPǁ

b2
ǁx0ǁ 

exp (−
b1

2ǁPǁ
(t − t0)) +

1

√b2
(

2ǁPǁ2

b1√b2
α+1 ǁφǁ∞)

1

1−α ).   

We deduce that, the system (3.1) in a closed-loop with the 
controller (3.3) is globally practically uniformly exponentially sta-

ble. This ends the proof. ∎ 
For perturbed time-varying systems (3.1) in finite-dimensional 

spaces, we also have the following consequence. 

Corollary 3.2. (Ellouze, 2019)  Assume that X=Rn , U=Rm  and 
the assumptions (H1) and (H3) are satisfied, then the system (3.1) 
with the controller (3.3) is globally practically uniformly exponen-
tially stable. 
 
 

3.2  Feedback control of uncertain systems 

Let X be a Banach space, X∗ has the Radon-Nikodym proper-
ty and U is a Hilbert space.  

We consider the uncertain dynamical system:  

{
ẋ = Ax + Bu + G(t, x, u), t ≥  t0,

x(t0) = x0,
                                 (3.11) 

where x∈ X is the system state, u∈ U is the control input, A is 
the infinitesimal generator of the C0-semigroup S(t) on a Banach 

space X, B∈ L(U, X) and G: R+× X × U → R+ is continuous in 
t and locally Lipschitz continuous in x uniformly in t on bounded 
intervals, that is, for every t1 ≥ 0  and  constant c≥ 0, there is a 

constant M(c, t1), such that for all x, y∈ X:  ǁxǁ ≤ c, ǁyǁ ≤
c and for all t∈ [0, t1], u ∈ U  with  ǁuǁ ≤ c it holds that:   

ǁG(t, x, u) − G(t, y, u)ǁ ≤ M(c, t1)ǁx − yǁ. 

Let x(t,x0,u)  denote the state of a system (3.11) at moment 

t≥ t0 associated with an initial condition x0 ∈ X  at  t=t0 and 

input u∈ U.  
  We suppose the following assumption relating to system 

(3.11). 

(H4) The  perturbation term  G: R+× X × U → R+  satisfies 
the following condition: 

∃a, b > 0, ǁG(t, x, u)ǁ ≤ aǁxǁ + bǁuǁ + d(t) + ε, ∀ t ≥
0, ∀x ∈ X, ϵ ≥ 0.                                                        (3.12)  

where d is a non-negative continuous function with d ∈ Lp(R+, 

R+) for some  p∈ [1, +∞).           
The following lemma proved sufficient conditions for the global 

existence and uniqueness of solutions of system (3.11). 
Lemma 3.1. Under assumption (H4), the closed-loop system 
(3.3)- (3.11) have a unique solution which is globally defined for all 
t≥ t0. 
Proof. As G is locally Lipschitz continuous in x, uniformly in t, it 
follows from Pazy (1983) that for every initial condition the closed-
loop equation possesses a unique mild solution on some interval 

[t0, t0 + δ] with δ > 0. Indeed, integrating (3.11), we obtain the 

following for t∈[t0, t0 + δ]: 

x(t)=S(t-t0)x0+∫ S(t − s)[Bu(s) + G(s, x(s), u(s))]ds
t

t0
. 

 Since B∈ L(U, X), then by applying Gronwall inequality 
(Teschl, 2012, Lemma 2.7, p42), we have the following: 

ǁx(t)ǁ ≤ M1(ǁx0ǁ + M2 δ +ε)e M1δ(ǁBǁ ǁDǁ+a+bǁDǁ ),  

where: M1= sup{ǁS(t − s)ǁ: 0 ≤ t0 ≤ s ≤ t ≤ t + δ} and 
M2 = supt∈[t0,t0+δ]

ǁd(t) ǁ on an arbitrary time interval [t0,t0 +

δ].  Now, Pazy (1983, Theorem 1.4) gives that and so we have 

global existence. The proof is completed.                           ∎ 
The next theorem shows the practical stabilization of the sys-

tem (3.11) using the Lyapunov indirect method and Gronwall-
Bellman inequality. 
Theorem 3.3. Assume that A is exponentially stable and the 
assumption (H4) is satisfied. Let P, Q∈ LPD(X, X∗) be the opera-

tors satisfying the Lyapunov Eq. (3.6)  where P=P∗ and  
〈Qx, x〉 ≥ λǁxǁ2 for all  x∈ X, λ > 0.Then,  the nonlinear control 
system is practically stabilizable by the feedback control u(t)=-
ρB∗Px(t) if: 
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ρ <
λ−2aǁPǁ

2bǁBǁǁPǁ2
∙                                                      (3.13) 

Proof.   Let P∈ LPD(X, X∗) be an operator which is a solution of 

the Lyapunov Eq. (3.6). Define the Lyapunov function V:D(A)→
R + by V(x)=〈Px, x〉. Noting that, there exists 𝛼 > 0 such that:  

αǁxǁ2 ≤ V(x) ≤  ǁPǁǁxǁ2 ∙  

 Then, the derivative of V in t along the trajectories of system 
(3.11) and using the chosen feedback control and the Lyapunov 
equation is given as follows  

V̇(x)=〈Pẋ, x〉 + 〈Px, ẋ〉 = −〈Qx, x〉 − ρ〈PBB∗Px, x〉 −
ρ〈Px, BB∗Px〉 + 〈PG(t, x, u), x〉 + 〈Px, G(t, x, u)〉. 

 Since P is self-adjoint, by assumption (H4) and condition 

(3.13), we have for all t≥ t0: 

V(̇x) ≤ −kV(x) +
2ǁPǁ

√α
(d (t) +ϵ)√V(x),  

where  k=
λ−2bρǁBǁǁPǁ2−2aǁPǁ

ǁPǁ
> 0. 

Let ϑ(x)=√V(x). Then,   ϑ̇(x) ≤ −
k

2
ϑ(x) +

ǁPǁ

√α
(d(t) +

ε), ∀ x ∈ X, ∀ t ≥ t0.  Applying Lemma 2.2,  we obtain the fol-

lowing:    

ϑ(x)≤ ϑ(x0)e
−
k

2
(t−t0)+

ǁPǁ

√α
∫ exp (

k

2

t

t0
(s − t))(d(s) + ε) ds, 

∀ t ≥ t0.        

We distinguish three cases:  
1. If p=1,  we get: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁe

−
k

2
(t−t0) +

ǁPǁ

α
(ǁdǁ1 +

2ε

k
), ∀ t ≥ t0 

2. If  p∈ (1,+∞) and q> 0, such that 
1

P
+

1

q
= 1,  we have by 

applying Hölder inequality: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁe

−
k
2
(t−t0)

+
ǁPǁ

α
((

2

𝑞𝑘
)

1
q
ǁdǁp +

2ε

k
) ,∀ t ≥ t0 ∙ 

3. 3. If p=+∞. Then, we obtain the following: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁe

−
k

2
(t−t0) +

2ǁPǁ

αk
(ǁdǁ∞ +

2ε

k
), ∀ t ≥ t0 

We deduce that, the system (3.11) is practically stabilizable. 

This ends the proof.                                                                      ∎ 

In the following, we derive some sufficient conditions that 
guarantee practical stabilizability of system (3.11) in the case A is 

not exponentially stable and it is a generator of bounded C0-
semigroup, but the associated linear control system (3.2)  is ex-
actly null-controllable in finite time and the nonlinear perturbation 
satisfies a condition. 

Theorem 3.4. Assume that the linear control system (3.2) is ex-
actly null-controllable in finite time, then the system (3.11) is prac-
tically stabilizable for some appropriate numbers a, b satisfying 
the condition (3.12). 

Proof. The linear control system is exactly null-controllable in 
finite time, then from Proposition 3.4 there is an operator D∈
L(X, U), such the operator WL=A+BD is exponentially stable. Let 

P, Q ∈ LPD(X, X∗) be the operators satisfying the Lyapunov Eq. 
(3.6)  where P=P∗and 〈Qx, x〉 ≥ λǁxǁ2for all x∈ X and λ > 0. 
Consider the Lyaunov function V(x)=〈Px, x〉. We have: 

 αǁxǁ2 ≤ V(x) ≤  ǁPǁǁxǁ2 , α > 0. 

The Lie derivative of V along the trajectories of system (3.11)  
is given as follows: 

V̇(x) ≤ − λǁxǁ2 + 2〈PG(t, x, Dx), x〉
≤ −ηǁxǁ2 + 2 ǁPǁ(d(t) + ε), 

where η =  λ − 2(aǁPǁ + bǁDǁ).  We take a, b> 0, such that 

η > 0,  that is, aǁPǁ + bǁDǁ <
λ

2
∙   

Let ϑ(x)=√V(x).   Then:     

 ϑ̇(x) ≤ −
 η

2ǁPǁ
ϑ(x) +

ǁPǁ

√α
(d(t) + ε), ∀ x ∈ X, ∀ t ≥ t0. 

Using Lemma 2.2,  we have: 

ϑ(x)≤ ϑ(x0)e
−

 η

2ǁPǁ
(t−t0)+

ǁPǁ

√α
∫ exp (

 η

2ǁPǁ

t

t0
(s − t))(d(s) +

ε) ds, ∀ t ≥ t0.   

 We distinguish three cases:  

1. If p=1, we have for all t≥ 𝑡0:  

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁ e

−−
 η
2ǁPǁ

(t−t0) +
ǁPǁ

α
(ǁdǁ1

+
2ǁPǁε

η
), ∀ t ≥ t0 ∙ 

2. If  p∈ (1,+∞) and q> 0, such that 
1

P
+

1

q
= 1,  we obtain by 

applying Hölder inequality: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
ǁx0ǁ e

−
 η
2ǁPǁ

(t−t0)

+
ǁPǁ

α
((
2ǁPǁ

qη
)

1
q

ǁdǁp +
2ǁPǁε

η
) ,

∀ t ≥ t0 ∙ 

3.  If p=+∞. Then, we have: 

ǁx(t)ǁ ≤ √
ǁPǁ

α
 ǁx0ǁ e

−
 η
2ǁPǁ

(t−t0)

+
2ǁPǁ2

αη
(ǁdǁ∞ + ε),∀ t ≥ t0 ∙  

 We deduce that, the system (3.11) is practically stabilizable. 

This finishes the proof.                                                                 ∎         
Remark 3.2. The above results generalise theorems of stabiliza-
bility in Phat and Kiet  (2002)  with  d(t)=ε =0. 

4. EXAMPLES                                                                     

In this section, we give some examples to illustrate the effec-
tiveness of the results obtained in the present paper. 
 
Example 4.1.  We consider the controlled metal bar: 
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{
 
 

 
 

∂x(ζ,t)

∂t
=

∂2x(ζ,t)

∂2ζ
+ 𝟏[1

2
,1]u(t) +

1

1+t2
x(ζ, t) +

1+t

(1+t2)(1+ǁx(ζ,t)ǁ
,

∂x

∂ζ
(0, t) = 0 =

∂x

∂ζ
(1, t), x(ζ, 0) = x0 (ζ), t ≥ 0,

        (4.1.) 

where x(ζ, t) represents the temperature at positionζ at time t 

and x0 (ζ) represents the initial temperature profile and u(t) rep-
resents the addition of heat along the bar. The two boundary 
conditions state that there is no heat flow at the boundary, and 

thus the bar is insulated. Let X=L2(0,1)  and U=C. Equation (4.1) 

can be rewritten as (3.1), where A=
∂2x(ζ,t )

∂2ζ
  with D(A)={h∈

L2(0,1), h,
∂h

∂ζ
  is absolutely continuous, 

 ∂2h

∂2ζ
∈ L2(0,1) and 

∂h

∂ζ
(0) = 0 =

∂h

∂ζ
(1)}, B=𝟏

[
1

2
,1]
  and F(t,x)= 

1

1+t2
x(ζ, t) +

1+t

(1+t2)(1+ǁx(ζ,t)ǁ
∙ 

A possesses an orthonormal basis of eigenvector 𝜑0(ζ) = 1  

and  𝜑𝑛(ζ) = √2 cos (n𝜋ζ), n ≥ 1.  Furthermore, the semi-

group (S(t))t≥t0  generated by A is given by:  

 

S(t)x= ∑ 𝑒−𝑛
2𝜋2𝑡∞

𝑛=0 〈𝑥,  𝜑𝑛〉 𝜑𝑛.  
 
Using Proposition 3.1, it is easy to see that the nominal system of 
(4.1) is exactly null-controllable in finite time. Moreover, the as-

sumption (H2) is satisfied with η=0 and φ(t) =
1

1+t2
 and μ(t) =

1+t

1+t2
 are non-negative functions with φ ∈ L1(R+, R +) and 

μ ∈ Lp(R+, R+) for some p∈ [1, +∞). Then, all hypotheses of 
Theorem 3.1 are satisfied and the controlled heat Eq. (4.1) is 
practically stabilizable.  
 
Example 4.2. We consider the controlled perturbed heat equation: 

{

∂x(ζ,t)

∂t
=

∂2x(ζ,t)

∂2ζ
+

2+t2

1+t2
u(t) + x(ζ, t) + e−t𝟏[0,π

2
]

 
x(0, t) = 0 = x(π, t), x(ζ, 0) = x0 (ζ), t ≥ 0,

            (4.2) 

where x(ζ, t) represents the temperature at position ζ ∈ [0, π] 
time t and x0 (ζ) represents the initial temperature profile.  

Let X=L2(0, 𝜋) and U=C. It is useful to formulate the equation 

(4.2) as an abstract differential equation of the form (3.11), where 

A=
∂2x(ζ,t)

∂2ζ
 with D(A) ={ h ∈ L2(0, π),

∂h

∂ζ
  is absolutely continuous 

∂2h

∂2ζ
∈ L2(0, 𝜋) and h(0) = 0 = h(π)}, B=I and 

G(t, x(ζ, t)u)=x(ζ, t) +
1

1+t2
u(t)+ 𝑒−𝑡𝟏

[0,
𝜋

2
]
. 

A possesses an orthonormal basis of eigenvector  φn(ζ) =

√
2

π
sin(nζ), n≥ 0.  Furthermore, the semigroup (S(t))t≥t0   gen-

erated by A is given by:  

S(t)=∑ e−n
2t∞

n=1  〈x,  φn〉 φn.  

Obviously, S(t) is exponentially stable. Therefore, A is expo-
nentially stable. Moreover, G satisfies the assumption (H4), just 

take a=1, b=1, ε = 0 and d (t) =
π  

2
e−t,  is a non-negative contin-

uous function, with d∈ Lp(R+, R+) for some  p∈ [1, +∞).   
Consequently, by applying Theorem 3.3, the controlled heat 
Eq. (4.2) is practically stabilizable.    

5. CONCLUSION 

Practical stabilization of infinite-dimensional evolution equa-
tions in Banach spaces has been investigated. Moreover, suffi-
cient conditions have been derived to guarantee the practical 
stabilization of a class of uncertain systems in Banach spaces. 
Illustrative examples are given to indicate significant improve-
ments and the application of the results. 
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