Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
With a continued strong pace of artificial intelligence, the way of formulating the flight day plan has a significant impact on the efficiency of flight training. However, through extensive research, we find that the scheduling of flight days still relies on manual work in most military aviation academies. This method suffers from several issues, including protracted processing times, elevated error rates, and insufficient degree of optimization. This article provides a comprehensive analysis of automated flight scheduling using a goal programming algorithm and details the implementation of the corresponding algorithm on the LINGO platform. The study enhances the flexibility and robustness of the model by setting bias variables, wherein the flight courses for students and instructors can be automatically and reasonably scheduled.
Rocznik
Tom
Strony
art. no. e151672
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- Naval Aviation University, 188 Erma Road, Yantai City, Shandong Province, China
autor
- Naval Aviation University, 188 Erma Road, Yantai City, Shandong Province, China
autor
- Naval Aviation University, 188 Erma Road, Yantai City, Shandong Province, China
Bibliografia
- [1] S. Telenyk, G. Nowakowski, and O. Pavlov, “Highly efficient scheduling algorithms for identical parallel machines with sufficient conditions for optimality of the solutions,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e148939, 2024, doi: 10.24425/bpasts.2024.148939.
- [2] A. Paszkiewicz, C. Ćwikła, and M. Bolanowski, “Multifunctional clustering based on the LEACH algorithm for edge-cloud continuum ecosystem,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 72, no. 1, p. e147919, 2024, doi: 10.24425/bpasts.2023.147919.
- [3] R.J. Slye and R. Dell, “Optimizing training event schedules at naval air station Fallon,” MSc Thesis, Naval Postgraduate School, Monterey, California, 2018.
- [4] M. Meditz and R. Dell, “Optimizing training event schedules at naval air station Kingsville,” MSc Thesis, Naval Postgraduate School, Monterey, California, 2019.
- [5] S. Suvorova and A. Novak, “The Use of Markov Decision Processes for Australian Naval Aviation Training Schedules,” Mil. Oper. Res., vol. 24, no. 2, pp. 31–46, 2019, doi: 10.5711/1082598324231.
- [6] J. Foraker, G. Lazzaro, and P. Nelson, “Scheduling of Daily Flight Training for a United States Navy Strike Fighter Squadron Detachment,” Mil. Oper. Res., vol. 26, no. 2, pp. 5–24, 2021, doi: 10.5711/1082598326205.
- [7] S. Xu and W. Bi, “Optimization of flight test tasks allocation and sequencing using genetic algorithm,” Appl. Soft Comput., vol. 115, p. 108241, 2022, doi: 10.1016/j.asoc.2021.108241.
- [8] J.X. Han, M.Y. Ma, and K. Wang, “Product modeling design based on genetic algorithm and BP neural network,” Neural Comput. Appl., vol. 33, pp. 4111–4117, 2023, doi: 10.1007/s00521-022-08196-z.
- [9] M. Tao, L. Ma, and Y. Ma. “Flight schedule adjustment for hub airports using multi-objective optimization,” J. Intell. Syst., vol. 30, no. 6, pp. 931–946, 2021, doi: 10.1515/jisys-2020-0114.
- [10] R.K. Pati, P. Vrat, and P. Kumar, “A Goal Programming model for paper recycling system,” Omega, vol. 36, no. 3, pp. 405–417, 2008, doi: 10.1016/j.omega.2006.04.014.
- [11] B. Aouni and O. Kettani, “Goal Programming model: A glorious history and a promising future”, Eur. J. Oper. Res., vol. 133, no. 2, pp. 225–231, 2001, doi: 10.1016/S0377-2217(00)00294-0.
- [12] A. Teymouri and H. Sahebi, “Airline operational crew-aircraft planning considering revenue management: A robust optimization model under disruption,” Int. J. Ind. Eng. Comput., vol. 14, no. 2, pp. 381–402, 2023, doi: 10.5267/j.ijiec.2022.12.003.
- [13] L. Chen, S. Han, C. Du, and Z. Luo, “A real-time integrated optimization of the aircraft holding time and rerouting under risk area,” Ann. Oper. Res., vol. 310, pp. 7–26, 2022, doi: 10.1007/s10479-020-03816-0.
- [14] H.Y. Jeong, B.D. Song, and S. Lee, “Optimal scheduling and quantitative analysis for multi-flying warehouse scheduling problem: Amazon airborne fulfillment center,” Transp. Res. Part C-Emerg. Technol., vol. 143, p. 103831, 2022, doi: 10.1016/j.trc.2022.103831.
- [15] I. Kabashkin and B. Misnevs, “Artificial Intelligence in Aviation: New Professionals for New Technologies,” Appl. Sci., vol. 13, no. 21, p. 116600, 2023, doi: 10.3390/app132111660.
- [16] D. Gui, M. Li, and Z. Huang, “Optimal aircraft arrival scheduling with continuous descent operations in busy terminal maneuvering areas”, J. Air Transp. Manag., vol. 107, p. 102344, 2023, doi: 10.1016/j.jairtraman.2022.102344.
- [17] M. Tavana, H. Kian, and K. Govindan, “A comprehensive framework for sustainable closed-loop supply chain network design,” J. Clean. Prod., vol. 332, no. 15, p. 129777, 2022, doi: 10.1016/j.jclepro.2021.129777.
- [18] T. Pawlak and B. Górka, “Continuous update of business process trees using Continuous Inductive Miner,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 71, no. 1, p. e143551, 2023, doi: 10.24425/bpasts.2022.143551.
- [19] H.Y. Kang and A.H.I. Lee, “An evolutionary genetic algorithm for a multi-objective two-sided assembly line balancing problem: a case study of automotive manufacturing operations,” Qual. Technol. Quant. Manag., vol. 20, no. 1, pp. 66–88, 2023, doi: 10.1080/16843703.2022.2079062.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8c60d82-4c1f-4c23-8336-8449d0280938
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.