PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A machine learning approach to predict explosive spalling of heated concrete

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Explosive spalling is an unfavorable phenomenon observed in concrete when exposed to heating load. It is a great potential threat to safety of concrete structures subjected to accidental thermal loads. Therefore, assessing explosive spalling risk of concrete is important for fire safety design of concrete structures. This paper proposed a popular machine learning approach, i.e., artificial neural network (ANN), to assess explosive spalling risk of concrete. Besides, the decision tree method was also used to execute the same mission for a comparison purpose. Twenty-eight groups of heating tests were conducted to validate the proposed ANN model. The ANN model behaved well in assessing explosive spalling of concrete, with a prediction accuracy of 82.1%. This study shows that ANN is a promising method for adequate classification of concrete as material resistant or not resistant to thermal explosive spalling.
Rocznik
Strony
535--559
Opis fizyczny
Bibliogr. 57 poz., rys., wykr.
Twórcy
  • Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong, China
  • Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University, Ministry of Education, Chongqing 400045, China
Bibliografia
  • [1] Bangi MR, Horiguchi T. Pore pressure development in hybrid fibre-reinforced high strength concrete at elevated temperatures. Cem Concr Res. 2011;41(11):1150–6.
  • [2] Bosnjak J. Explosive spalling and permeability of high performance concrete under fire: numerical and experimental investigations [Doctor Thesis]: Universität Stuttgart 2014.
  • [3] Klingsch EW. Explosive spalling of concrete in fire. IBK-Bericht. 2014. https ://doi.org/10.3929/ethz-a-01007 6314.
  • [4] Liu J-C, Tan KH, Yao Y. A new perspective on nature of fire-induced spalling in concrete. Constr Build Mater. 2018;184:581–90.
  • [5] Davie C, Zhang H, Gibson A. Investigation of a continuum damage model as an indicator for the prediction of spalling in fire exposed concrete. Comput Struct. 2012;94:54–69.
  • [6] Zeiml M, Leithner D, Lackner R, Mang HA. How do polypropylene fibers improve the spalling behavior of in-situ concrete? Cem Concr Res. 2006;36(5):929–42.
  • [7] Liu J-C, Zhang Y. A simplified model to predict thermo-hygral behaviour and explosive spalling of concrete. J Adv Concr Tech-nol. 2019;17(7):419–33.
  • [8] Gawin D, Pesavento F, Castells AG. On reliable predicting risk and nature of thermal spalling in heated concrete. Arch Civ Mech Eng. 2018;18(4):1219–27.
  • [9] Sadowski L. Non-destructive investigation of corrosion current density in steel reinforced concrete by artificial neural networks. Arch Civ Mech Eng. 2013;13(1):104–11.
  • [10] Ahmadi M, Naderpour H, Kheyroddin A. Utilization of artificial neural networks to prediction of the capacity of CCFT short columns subject to short term axial load. Arch Civ Mech Eng. 2014;14(3):510–7.
  • [11] Seitllari A, Naser M. Leveraging artificial intelligence to assess explosive spalling in fire-exposed RC columns. Comput Concr. 2019;24(3):271–82.
  • [12] Kingma DP, Ba J. Adam: A method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.
  • [13] Mohd Ali A, Sanjayan J, Guerrieri M. Specimens size, aggregate size, and aggregate type effect on spalling of concrete in fire. Fire Mater. 2018;42(1):59–68.
  • [14] Hager I, Mróz K, Tracz T. Concrete propensity to fire spalling: Testing and observations. MATEC Web of Conferences; 2018: EDP Sciences. https ://doi.org/10.1051/matec conf/20181 63020 04.
  • [15] Phan LT, Lawson JR, Davis FL. Effects of elevated temperature exposure on heating characteristics, spalling, and residual properties of high performance concrete. Mater Struct. 2001;34(2):83–91.
  • [16] Boström L, Wickström U, Adl-Zarrabi B. Effect of specimen size and loading conditions on spalling of concrete. Fire Mater. 2007;31(3):173–86.
  • [17] Li M, Qian C, Sun W. Mechanical properties of high-strength concrete after fire. Cem Concr Res. 2004;34(6):1001–5.
  • [18] Zhao R, Sanjayan JG. Geopolymer and Portland cement concretes in simulated fire. Mag Concrete Res. 2011;63(3):163–73.
  • [19] Akca AH, Zihnioğlu NÖ. High performance concrete under elevated temperatures. Constr Build Mater. 2013;44:317–28.
  • [20] Zhang B. Effects of moisture evaporation (weight loss) on fracture properties of high performance concrete subjected to high temperatures. Fire Saf J. 2011;46(8):543–9.
  • [21] Pan Z, Sanjayan JG, Kong DL. Effect of aggregate size on spalling of geopolymer and Portland cement concretes subjected to elevated temperatures. Constr Build Mater. 2012;36:365–72.
  • [22] Arioz O. Effects of elevated temperatures on properties of concrete. Fire Saf J. 2007;42(8):516–22.
  • [23] Sideris K, Manita P, Chaniotakis E. Performance of thermally damaged fibre reinforced concretes. Constr Build Mater. 2009;23(3):1232–9.
  • [24] Chen B, Liu J. Residual strength of hybrid-fiber-reinforced high-strength concrete after exposure to high temperatures. Cem Concr Res. 2004;34(6):1065–9.
  • [25] Sideris KK. Mechanical characteristics of self-consolidating concretes exposed to elevated temperatures. J Mater Civil Eng. 2007;19(8):648–54.
  • [26] Liu J-C, Tan KH. Mechanism of PVA fibers in mitigating explosive spalling of engineered cementitious composite at elevated temperature. Cem Concr Compos. 2018a;93:235–45.
  • [27] Mugume RB, Horiguchi T. Prediction of spalling in fibre-reinforced high strength concrete at elevated temperatures. Mater Struct. 2014;47(4):591–604.
  • [28] Li H. Experimental study on spalling behaviour and mechanical properties of reactive powder concrete after elevated temperature [Doctoral Thesis]: Harbin Institute of Technology; 2012.
  • [29] Yermak N, Pliya P, Beaucour A-L, Simon A, Noumowé A. Influence of steel and/or polypropylene fibres on the behaviour of concrete at high temperature: spalling, transfer and mechanical properties. Constr Build Mater. 2017;132:240–50.
  • [30] Li Y, Huang S-S, Pilakoutas K, Angelakopoulos H, Burgess I. Mitigation of fire-induced spalling of concrete using recycled tyre polymer fibre. Proceedings of the 6th International Workshop on Concrete Spalling due to Fire Exposure; Sheffield, UK: The University of Sheffield; 2019.
  • [31] Ruano G, Isla F, Luccioni B, Zerbino R, Giaccio G. Steel fibers pull-out after exposure to high temperatures and its contribution to the residual mechanical behavior of high strength concrete. Constr Build Mater. 2018;163:571–85.
  • [32] Pathak N, Siddique R. Properties of self-compacting-concrete containing fly ash subjected to elevated temperatures. Constr Build Mater. 2012;30:274–80.
  • [33] Behnood A, Ziari H. Effects of silica fume addition and water to cement ratio on the properties of high-strength concrete after exposure to high temperatures. Cem Concr Compos. 2008;30(2):106–12.
  • [34] Husem M. The effects of high temperature on compressive and flexural strengths of ordinary and high-performance concrete. Fire Saf J. 2006;41(2):155–63.
  • [35] Poon C, Shui Z, Lam L. Compressive behavior of fiber reinforced high-performance concrete subjected to elevated temperatures. Cem Concr Res. 2004;34(12):2215–22.
  • [36] Kanéma M, Pliya P, Noumowé A, Gallias J. Spalling, thermal, and hydrous behavior of ordinary and high-strength concrete subjected to elevated temperature. J Mater Civil Eng. 2011;23(7):921–30.
  • [37] Bingöl AF, Gül R. Effect of elevated temperatures and cooling regimes on normal strength concrete. Fire Mater. 2009;33(2):79–88.
  • [38] Yüksel İ, Siddique R, Özkan Ö. Influence of high temperature on the properties of concretes made with industrial by-products as fine aggregate replacement. Constr Build Mater. 2011;25(2):967–72.
  • [39] Amrutha A, Nayak G, Narasimhan M, Rajeeva S. High temperature performance of self-compacting high-volume fly ash concrete mixes. J Struct Fire Eng. 2011;2(2):81–90.
  • [40] Liu J-C, Tan KH. Fire resistance of ultra-high performance strain hardening cementitious composite: residual mechanical properties and spalling resistance. Cem Concr Compos. 2018b;89:62–75.
  • [41] Bhat PS, Chang V, Li M. Effect of elevated temperature on strain-hardening engineered cementitious composites. Constr Build Mater. 2014;69:370–80.
  • [42] Rashad AM. An exploratory study on high-volume fly ash concrete incorporating silica fume subjected to thermal loads. J Clean Prod. 2015;87:735–44.
  • [43] Novak J, Kohoutkova A. Mechanical properties of concrete composites subject to elevated temperature. Fire Saf J. 2018;95:66–76.
  • [44] Choe G, Kim G, Yoon M, Hwang E, Nam J, Guncunski N. Effect of moisture migration and water vapor pressure build-up with the heating rate on concrete spalling type. Cem Concr Res. 2019;116:1–10.
  • [45] Lee J, Terada K, Yamazaki M, Harada K. Impact of melting and burnout of polypropylene fibre on air permeability and mechanical properties of high-strength concrete. Fire Saf J. 2017;91:553–60.
  • [46] Shaikh F, Taweel M. Compressive strength and failure behaviour of fibre reinforced concrete at elevated temperatures. Adv Concr Constr. 2015;3(4):283–93.
  • [47] Ju Y, Wang L, Liu H, Tian K. An experimental investigation of the thermal spalling of polypropylene-fibered reactive powder concrete exposed to elevated temperatures. Sci Bull. 2015;60(23):2022–40.
  • [48] Poon C-S, Azhar S, Anson M, Wong Y-L. Comparison of the strength and durability performance of normal-and high-strength pozzolanic concretes at elevated temperatures. Cem Concr Res. 2001;31(9):1291–300.
  • [49] Khaliq W, Kodur V. High temperature mechanical properties of high-strength fly ash concrete with and without fibers. ACI Mater J. 2012;109:6.
  • [50] Chan Y, Luo X, Sun W. Compressive strength and pore structure of high-performance concrete after exposure to high temperature up to 800 C. Cem Concr Res. 2000;30(2):247–51.
  • [51] Han C-G, Hwang Y-S, Yang S-H, Gowripalan N. Performance of spalling resistance of high performance concrete with polypro-pylene fiber contents and lateral confinement. Cem Concr Res. 2005;35(9):1747–53.
  • [52] Han C-G, Han M-C, Heo Y-S. Improvement of residual compressive strength and spalling resistance of high-strength RC columns subjected to fire. Constr Build Mater. 2009;23(1):107–16.
  • [53] Choe G, Kim G, Gucunski N, Lee S. Evaluation of the mechanical properties of 200 MPa ultra-high-strength concrete at elevated temperatures and residual strength of column. Constr Build Mater. 2015;86:159–68.
  • [54] Heo Y-S, Sanjayan JG, Han C-G, Han M-C. Synergistic effect of combined fibers for spalling protection of concrete in fire. Cem Concr Res. 2010;40(10):1547–54.
  • [55] Demirel B, Keleştemur O. Effect of elevated temperature on the mechanical properties of concrete produced with finely ground pumice and silica fume. Fire Saf J. 2010;45(6–8):385–91.
  • [56] Lee G, Han D, Han M-C, Han C-G, Son H-J. Combining poly-propylene and nylon fibers to optimize fiber addition for spalling protection of high-strength concrete. Constr Build Mater. 2012;34:313–20.
  • [57] Liu C-T, Huang J-S. Fire performance of highly flowable reactive powder concrete. Constr Build Mater. 2009;23(5):2072–9.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8c3dbe3-5e7b-45c6-8572-057d0ccd1338
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.