PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Meshless local radial point interpolation (MLRPI) for generalized telegraph and heat diffusion equation with non-local boundary conditions

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, the meshless local radial point interpolation (MLRPI) method is formulated to the generalized one-dimensional linear telegraph and heat diffusion equation with non-local boundary conditions. The MLRPI method is categorized under meshless methods in which any background integration cells are not required, so that all integrations are carried out locally over small quadrature domains of regular shapes, such as lines in one dimensions, circles or squares in two dimensions and spheres or cubes in three dimensions. A technique based on the radial point interpolation is adopted to construct shape functions, also called basis functions, using the radial basis functions. These shape functions have delta function property in the frame work of interpolation, therefore they convince us to impose boundary conditions directly. The time derivatives are approximated by the finite difference time- -stepping method. We also apply Simpson’s integration rule to treat the non-local boundary conditions. Convergency and stability of the MLRPI method are clarified by surveying some numerical experiments.
Rocznik
Strony
571—582
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Imam Khomeini International University, Department of Mathematics, Qazvin, Iran
autor
  • Imam Khomeini International University, Department of Mathematics, Qazvin, Iran
Bibliografia
  • 1. Almenar P., Jodar L., Martin J.A., 1997, Mixed problems for the time-dependent telegraph equation: Continuous numerical solutions with a priori error bounds, Mathematical and Computer Modelling, 25, 11, 31-44
  • 2. Atluri S., Zhu T., 1998, A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22, 117-127
  • 3. Banasiak J., Mika J.R., 1998, Singularly perturbed telegraph equations with applications in the random walk theory, Journal of Applied Mathematics and Stochastic Analysis, 11, 1, 9-28
  • 4. Belytschko T., Lu Y.Y., Gu L., 1995, Element free Galerkin methods for static and dynamic fracture, International Journal of Solids and Structures, 32, 2547-2570
  • 5. Boyce W.E., DiPrima R.C., 1977, Differential Equations Elementary and Boundary Value Problems, Wiley, New York
  • 6. Bratsos A.G., 2008, An improved numerical scheme for the sine-Gordon equation in 2+1 dimensions, International Journal for Numerical Methods in Engineering, 75, 787-799
  • 7. Ciment M., Leventhal S.H., 1978, A note on the operator compact implicit method for the wave equation, Mathematics of Computation, 32, 143-147
  • 8. Dashtimanesh A., Ghadimi P., 2013, A three-dimensional SPH model for detailed study of free surface deformation, just behind a rectangular planing hull, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 35, 4, 369-380
  • 9. De S., Bathe K.J., 2000, The method of finite spheres, Computational Mechanics, 25, 329-345
  • 10. Dehghan M., Mirzaei D., 2008, The meshless local Petrov-Galerkin (MLPG) method for the generalized two-dimensional non-linear Schr¨odinger equation, Engineering Analysis with Boundary Elements, 32, 747-756
  • 11. Dehghan M., Shokri A., 2008, A numerical method for solution of the two dimensional sineGordon equation using the radial basis functions, Mathematics and Computers in Simulation, 79, 700-715
  • 12. Gonzalez-Velasco E.A., 1995, Fourier Analysis and Boundary Value Problems, Academic Press, New York
  • 13. Gu Y., Liu G., 2002, A boundary point interpolation method for stress analysis of solids, Computational Mechanics, 28, 47-54
  • 14. Gu Y.T., Liu G.R., 2003, A boundary radial point interpolation method (BRPIM) for 2-D structural analyses, Structural Engineering and Mechanics, 15, 535-550
  • 15. Hosseini V.R., Shivanian E., Chen W., 2015, Local integration of 2-D fractional telegraph equation via local radial point interpolant approximation, European Physical Journal Plus, 130, 33-54
  • 16. Hu D., Long S., Liu K., Li G., 2006, A modified meshless local Petrov-Galerkin method to elasticity problems in computer modeling and simulation, Engineering Analysis with Boundary Elements, 30, 399-404
  • 17. Jordan P.M., Puri A., 1999, Digital signal propagation in dispersive media, Journal of Applied Physics, 85, 3, 1273-1282
  • 18. Kansa E., 1990, Multiquadrics-a scattered data approximation scheme with applications to computational fluid-dynamics. I. Surface approximations and partial derivative estimates, Computers and Mathematics with Applications, 19, 8/9, 127-145
  • 19. Kochmann D.M., Venturini G.N., 2014, A meshless quasicontinuum method based on local maximum-entropy interpolation, Modelling and Simulation in Materials Science and Engineering, 22, 3, 034007
  • 20. Libre N., Emdadi A., Kansa E., Shekarchi M., Rahimian M., 2008, A fast adaptive wavelet scheme in RBF collocation for nearly singular potential PDEs, Computer Modeling in Engineering and Sciences, 38, 3, 263-284
  • 21. Ling L., Schaback R., 2008, Stable and convergent unsymmetric meshless collocation methods, SIAM Journal of Numerical Analysis, 46, 3, 1097-1115
  • 22. Liu G.R., Gu Y.T., 2001, A local radial point interpolation method (LR-PIM) for free vibration analyses of 2-D solids, Journal of Sound and Vibration, 246, 1, 29-46
  • 23. Liu G., Gu Y., 2005, An Introduction to Meshfree Methods and their Programing, Springer
  • 24. Liu K., Long S., Li G., 2006, A simple and less-costly meshless local Petrov-Galerkin (MLPG) method for the dynamic fracture problem, Engineering Analysis with Boundary Elements, 30, 72-76
  • 25. Liu W.K., Jun S., Zhang Y.F., 1995, Reproducing kernel particle methods, International Journal for Numerical Methods in Engineering, 20, 1081-1106
  • 26. Melenk J.M., Babuska I., 1996, The partition of unity finite element method: Basic theory and applications, Computer Methods in Applied Mechanics and Engineerin, 139, 289-314
  • 27. Mukherjee Y.X., Mukherjee S., 1997, Boundary node method for potential problems, International Journal for Numerical Methods in Engineering, 40, 797-815
  • 28. Nayroles B., Touzot G., Villon P., 1992, Generalizing the finite element method: diffuse approximation and diffuse elements, Computational Mechanics, 10, 307-318
  • 29. Pan X., Yuan H., 2009, Applications of meshless methods for damage computations with finite strains, Modelling and Simulation in Materials Science and Engineering, 17, 4, 045005
  • 30. Shirzadi A., 2014, Solving 2D reaction-diffusion equations with nonlocal boundary conditions by the RBF-MLPG method, Computational Mathematics and Modeling, 25, 4, 521-529
  • 31. Shivanian E., 2013, Analysis of meshless local radial point interpolation (MLRPI) on a nonlinear partial integro-differential equation arising in population dynamics, Engineering Analysis with Boundary Elements, 37, 1693-1702
  • 32. Shivanian E., 2015a, A new spectral meshless radial point interpolation (SMRPI) method: A wellbehaved alternative to the meshless weak forms, Engineering Analysis with Boundary Elements, 54, 1-12
  • 33. Shivanian E., 2015b, Meshless local Petrov-Galerkin (MLPG) method for three-dimensional nonlinear wave equations via moving least squares approximation, Engineering Analysis with Boundary Elements, 50, 249-257
  • 34. Shivanian E., Khodabandehlo H.R., 2014, Meshless local radial point interpolation (MLRPI) on the telegraph equation with purely integral conditions, European Physical Journal Plus, 129, 241-251
  • 35. Singh I.V., Tanaka M., Endo M., 2007, Meshless method for nonlinear heat conduction analysis of nano-composites, Heat and Mass Transfer, 43, 10, 1097-1106
  • 36. Sladek J., Sladek V., Zhang C., Tan C.L., 2006, Evaluation of fracture parameters for crack problems in FGM by a meshless method, Journal of Theoretical and Applied Mechanics, 44, 3, 603-636
  • 37. Tikhonov A.N., Samarskii A.A., 1990, Equations of Mathematical Physics, Dover, New York
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8c2d9f4-5262-49fb-9677-cbcdfcea9ec7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.