PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wearable Wonder: A compact dipole antenna for triple band Sub-6 GHz 5G and WLAN applications

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wearable Wonder: kompaktowa antena dipolowa do zastosowań w potrójnym paśmie Sub-6 GHz 5G i WLAN
Języki publikacji
EN
Abstrakty
EN
This paper presents a detailed design of a compact dipole antenna for triple band sub-6 GHz 5G and WLAN applications. The design procedure, divided into three stages, primarily focuses on enhancing impedance bandwidth and gain across all three resonant frequency bands but keeping the dimensions small. The proposed antenna was designed to work at 2.45 GHz, 3.5 GHz and 5.8 GHz with maximum gains 3.275 dB, 3.45 dB and 6.25 dB respectively. The proposed antenna a good candidate for the application of Sub-6 GHz 5G as well as WLAN in wearable devices.
PL
W artykule przedstawiono szczegółowy projekt kompaktowej anteny dipolowej do zastosowań trójpasmowych 5G i WLAN w paśmie poniżej 6 GHz. Procedura projektowa, podzielona na trzy etapy, koncentruje się przede wszystkim na zwiększeniu szerokości pasma impedancji i wzmocnieniu we wszystkich trzech pasmach częstotliwości rezonansowych, przy zachowaniu małych wymiarów. Proponowana antena została zaprojektowana do pracy w pasmach 2,45 GHz, 3,5 GHz i 5,8 GHz z maksymalnymi zyskami odpowiednio 3,275 dB, 3,45 dB i 6,25 dB. Proponowana antena jest dobrym kandydatem do zastosowania w sieciach 5G Sub-6 GHz oraz WLAN w urządzeniach przenośnych.
Rocznik
Strony
148--153
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
  • Department of ECE, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology,600062, Chennai, India
Bibliografia
  • [1] M. Alibakhshikenari et al., "A Comprehensive Survey on “Various Decoupling Mechanisms With Focus on Metamaterial and Metasurface Principles Applicable to SAR and MIMO Antenna Systems”," in IEEE Access, vol. 8, pp. 192965193004, 2020, doi: 10.1109/ACCESS.2020.3032826.
  • [2] Ameen, Mohammad, Rajkishor Kumar, Naveen Mishra and Raghvendra Kumar Chaudhary. “A compact triple band dual polarized metamaterial antenna loaded with double hexagonal SRR for WLAN/WiMAX applications.” 2017 IEEE International Conference on Antenna Innovations & Modern Technologies for Ground, Aircraft and Satellite Applications (iAIM) (2017): 14.
  • [3] G. Augustin, S. V. Shynu, P. Mohanan, C. K. Aanandan, and K. Vasudevan, “Compact dual-band antenna for wireless access point,” Electron. Lett., vol. 42, no. 9, pp. 502–503, Apr. 2006.
  • [4] T. Cai, G. M. Wang, X. F. Zhang, Y. W. Wang, B. F. Zong, and H. X. Xu, “Compact microstrip antenna with enhanced bandwidth by loading magneto-electro-dielectric planar waveguided metamaterials,” IEEE Trans. Antennas Propag., vol. 63, pp. 2306-2311, 2015.
  • [5] Choudhary, N. K., Virender Kumar Saxena, J. S. Saini and Deepak Bhatnagar. “Design of CPW fed non-planar triple band antenna.” 2017 IEEE Applied Electromagnetics Conference (AEMC) (2017): 1-2.
  • [6] Fertas, Fouad & Challal, Mouloud & Fertas, K.. (2017). Design and implementation of a miniaturized CPW-Fed microstrip antenna for triple-band applications. IEEE Trans. Antennas Propag., 1-6. 10.1109/ICEE-B.2017.8192103.
  • [7] Samantaray, Diptiranjan & Bhattacharyya, Somak & Srinivas, Kothapalli. (2019). A modified fractal‐shaped slotted patch antenna with defected ground using metasurface for dual band applications. International Journal of RF and Microwave Computer-Aided Engineering. 29. 10.1002/mmce.21932.
  • [8] Jalali, A. R., Ahamdi-Shokouh, J., & Emadian, S. R. (2016). Compact multiband monopole antenna for UMTS, WiMAX, and WLAN applications. Microwave and Optical Technology Letters, 58(4), 844–847. doi:10.1002/mop.29685.
  • [9] Liu, Guifeng & Liu, Ying & Gong, Shuxi. (2016). Compact triband wide-slot monopole antenna with dual-ring resonator for WLAN/WiMAX applications. Microwave and Optical Technology Letters. 58. 1097-1101. 10.1002/mop.29759.
  • [10] Geetharamani Gopal and Aathmanesan Thangakalai, “Cross Dipole Antenna for 4G and Sub-6 GHz 5G Base Station Applications”, ACES Journal, vol. 35, no. 1, pp. 16–22, Jan. 2020.
  • [11] Li, L.-W., Li, Y.-N., Yeo, T.S., Mosig, J.R., Martin, O.J.F. (201004-19). A broadband and high-gain metamaterial microstrip antenna. Applied Physics Letters 96 (16), https://doi.org/10.1063/1.3396984.
  • [12] Samantaray, Diptiranjan & Bhattacharyya, Somak & Srinivas, Kothapalli. (2019). A modified fractal‐shaped slotted patch antenna with defected ground using metasurface for dual band applications. International Journal of RF and Microwave Computer-Aided Engineering. 29. 10.1002/mmce.21932.
  • [13] Manouare, A. & el Idrissi, Abdelaziz & Abdelilah, Ghammaz & Saida, Ibnyaich. (2015). Broadband triple-band CPW-fed patch antenna for WLAN/WiMAX operations. 1-5. 10.1109/WINCOM.2015.7381333.
  • [14] A.W. Mohammad Saadh, R. Poonkuzhali,A compact CPW fed multiband antenna for WLAN/INSAT/WPAN applications, AEU - International Journal of Electronics and Communications,Volume 109,2019,Pages 128-135,ISSN 14348411,https://doi.org/10.1016/j.aeue.2019.07.007.
  • [15] Mitra, D., A. Sarkhel, O. Kundu, and S. R. B. Chaudhuri, "Design of compact and high directive slot antennas using grounded metamaterial slab," IEEE Antennas Wireless Propag.Lett., harvesting. Electromagnetics, 1–10. Vol. 14, doi:10.1109/LAWP.2014.2380772. 811-814, 2015.
  • [16] Geetharamani, G., Aathmanesan, T. A Metamaterial Inspired Tapered Patch Antenna for WLAN/WiMAX Applications. Wireless Pers Commun 113, 1331–1343 (2020). https://doi.org/10.1007/s11277-020-07283-5.
  • [17] N. Nasimuddin, Z. N. Chen and X. Qing, "Bandwidth Enhancement of a Single-Feed Circularly Polarized Antenna Using a Metasurface: Metamaterial-based wideband CP rectangular microstrip antenna," in IEEE Antennas and Propagation Magazine, vol. 58, no. 2, pp. 39-46, April 2016, doi: 10.1109/MAP.2016.2520257.
  • [18] Syed Nasser, Srien Sithara, Wei E. I. Liu and Zhi Ning Chen. “Wide Bandwidth and Enhanced Gain of a Low-Profile Dipole Antenna Achieved by Integrated Suspended Metasurface.” IEEE Transactions on Antennas and Propagation 66 (2018): 1540-1544.
  • [19] Pandey, Shashi & Pandey, Ganga & Pallian Murikoli, Sarun. (2019). Circularly polarized micro-strip antenna with fractal trees loaded ground plane. Electromagnetics. 39. 1-19. 10.1080/02726343.2019.1658167.
  • [20] Geetharamani, G., Aathmanesan, T. Design of Metamaterial Antenna for 2.4 GHz WiFi Applications. Wireless Pers Commun 113, 2289–2300 (2020). https://doi.org/10.1007/s11277-02007324-z
  • [21] Samantaray, Diptiranjan, Somak Bhattacharyya and Kothapalli Venkata Srinivas. “A modified fractal‐shaped slotted patch antenna with defected ground using metasurface for dual band applications.” International Journal of RF and Microwave Computer‐Aided Engineering 29 (2019).
  • [22] Sharma, Anand & Gangwar, Ravi. (2015). Triple band twosegment cylindrical dielectric resonator antenna with a novel microstrip feed for WLAN/WIMAX applications. Microwave and Optical Technology 10.1002/mop.29408. Letters. 57. 2649-2655.
  • [23] ingh, N., Kanaujia, B. K., Tariq Beg, M., Mainuddin, & Kumar, S. (2019). A triple band circularly polarized rectenna for RF energy doi:10.1080/02726343.2019.1658164.
  • [24] Tangthong, Nipont, Pichet Moeikham and Somsak Akatimagool. “A compact multi band CPW-Fed monopole antenna using L-shaped and straight slots.” 2016 13th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON) (2016): 1-4.
  • [25] Xu, He-xiu, Guangming Wang, Jian-gang Liang, Mei Qing Qi and Xi Gao. “Compact Circularly Polarized Antennas Combining Meta-Surfaces and Strong Space-Filling MetaResonators.” IEEE Transactions Propagation 61 (2013): 3442-3450. on Antennas and Propagation 61 (2013): 3442-3450.
  • [26] T, Aathmanesan. (2020). Design of Metamaterial Antenna for 2.4GHz WiFi Applications. Wireless Personal Communications. 111. 10.1007/s11277-020-07324-z.
  • [27] Xu K, Liu Y, Dong L, et al. 2018. Printed multi-band compound meta loop antenna with hybrid-coupled SRRs. IET Microw Antennas Propag. 12(8):1382-1388.
  • [28] M. Yang and W. Zhang, "Study and design of tri-band monopole antenna fed by a coplanar waveguide," Proceedings of 2014 3rd Asia-Pacific Conference on Antennas and Propagation, Harbin, China, 2014, pp. 458-460, doi: 10.1109/APCAP.2014.6992525.
  • [29] Sim, Chow‐Yen‐Desmond, Chih-Husan Yeh and Hen‐Lun Lin. “Compact size triple-band monopole antenna with parasitic element for WLAN/WiMAX applications.” 2014 International Symposium on Antennas and Propagation Conference Proceedings (2014): 469-470.
  • [30] H. Zhai, K. Zhang, S. Yang and D. Feng, "A Low-Profile Dual Band Dual-Polarized Antenna With an AMC Surface for WLAN Applications," in IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2692-2695, 2017, doi: 10.1109/LAWP.2017.2741465.
  • [31] Zhu, H. L., Sing-Wai Cheung, Kwok L. Chung and Tung Ip Yuk. “Linear-to-Circular Polarization Conversion Using Metasurface.” IEEE Transactions on Ante1 (2013): 4615-4623.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8c1ebe6-9555-42c8-b2cd-8edf66ce96bd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.