PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on performance of a green hydrogen production system integrated with the thermally activated cooling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The energy transition is at the centre of research and development activities with the aim to fight against the effects of global warming. Today, renewable energies play a significant role in the electricity supply to the World and their use increases day after day. Because of the intermittency of a large-scale production system generates the need to develop clean energy storage systems. Hence, energy storage systems play is one of key elements in the energy transition. In this perspective, a green hydrogen is defined as an energy carrier thanks to its high energy density in relation to its negligible mass, not to mention its abundance in our environment, and its extraction, which does not contribute to any greenhouse gases. However, the production cost is not negligible. Hence, this work shows a numerical modelling of the heat balance from a green hydrogen production system using a thermal storage in a Metal Hydride (MH) tank for an electrification by Proton Exchange Membrane (PEM) fuel cell integrated into the production of heating, cooling and sanitary hot water (SHW) through the recovery of the heat released by the whole system combined with the technology of thermally activated cooling of an adsorber. This allows demonstrating that the green hydrogen can be an interesting solution according in the hydrogen production chain and in the tertiary sectors.
Twórcy
  • Department of Electrical Engineering, Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
  • Department of Electrical Engineering, Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
  • Department of Electrical Engineering, Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
  • Department of Electrical Engineering, Laboratory of Complex Cyber-Physical Systems (LCCPS) of ENSAM Hassan II University, 150 Bd du Nil, Casablanca 20670, Morocco
Bibliografia
  • [1] World Population Prospects, World Popul. Prospect. (2016). https://doi.org/10.18356/cd7acf62-en.
  • [2] A. Cascini, M. Gamberi, C. Mora, M. Rosano, M. Bortolini, Comparative Carbon Footprint Assessment of commercial walk-in refrigeration systems under different use configurations, J. Clean. Prod. 112 (2016) 3998–4011. https://doi.org/10.1016/j.jclepro.2015.08.075.
  • [3] The Future of Cooling – AnalysisIEA, https://www.iea.org/reports/the-future-of-cooling., (2020).
  • [4] D.W. Wu, R.Z. Wang, Combined cooling, heating and power: A review, Prog. Energy Combust. Sci. 32 (2006) 459–495. https://doi.org/10.1016/j.pecs.2006.02.001.
  • [5] Commissariat general au developpement durabl, Chiffres cles de l’energie, 2019.
  • [6] ADEME, Climate 2012, 2018.
  • [7] F. Sun, J. Li, L. Fu, Y. Li, R. Wang, S. Zhang, New configurations of district heating and cooling system based on absorption and compression chillers driven by waste heat of flue gas from coke ovens, Energy. 193 (2020) 116707. https://doi.org/10.1016/j.energy.2019.116707.
  • [8] C.P.-E. de l’Ifri, U. Ifri, U. 2020, Perspectives on a Hydrogen Strategy for the European Union, Ifri.Org. (2020). https://www.ifri.org/sites/default/files/atoms/files/philibert_hydrogen_strategy_2020.pdf.
  • [9] Https://www.revolution-energetique.com/la-toute-premiere-batterie-domestique-a-hydrogene-quel-est-son-interet/, La toute premiere batterie domestique a hydrogene : quel est son interet ?, (2021).
  • [10] T. Orozco, M. Herrera, J.D. Forero, CFD study of heat exchangers applied in brayton cycles: A case study in supercritical condition using carbon dioxide as working fluid, Int. Rev. Model. Simulations. 12 (2019) 72–82. https://doi.org/10.15866/iremos.v12i2.17221.
  • [11] M. De L’, H. Fiche, Fiche 3.2.1 Revision : septembre 2019, in: AFHYPAC-Th. Alleau Mémento l’Hydrogene Prod. D’Hydrogene Par Electrolyse l’eau, 2019.
  • [12] R.E. Rosli, A.B. Sulong, W.R.W. Daud, M.A. Zulkifley, T. Husaini, M.I. Rosli, E.H. Majlan, M.A. Haque, A review of high-temperature proton exchange membrane fuel cell (HT-PEMFC) system, Int. J. Hydrogen Energy. 42 (2017) 9293–9314. https://doi.org/10.1016/j.ijhydene.2016.06.211.
  • [13] K. Maeda, M. Suzuki, H. Aki, R&D and deployment of residential fuel cell cogeneration systems in Japan, in: IEEE Power Energy Soc. 2008 Gen. Meet. Convers. Deliv. Electr. Energy 21st Century, PES, IEEE, 2008: pp. 1–5. https://doi.org/10.1109/PES.2008.4596046.
  • [14] L.P. Moulebe, T. Abdelwahed, A.O. Eric, R. Nabila, Mathematical modeling of re-electrification by green hydrogen storage through the PEM fuel cell integrating a 10-year economic study applied to a hotel, E3S Web Conf. 229 (2021) 01038. https://doi.org/10.1051/e3sconf/202122901038.
  • [15] L.P. Moulebe, T. Abdelwahed, R. Nabila, Implementation of an Advanced PEM Hydrogen Storage System Based Cogeneration Using Photovoltaic System in a Building, in: 2020 Int. Conf. Control. Autom. Diagnosis, ICCAD 2020 - Proc., IEEE, 2020: pp. 1–6. https://doi.org/10.1109/ICCAD49821.2020.9260552.
  • [16] N. Enteria, K. Mizutani, The role of the thermally activated desiccant cooling technologies in the issue of energy and environment, Renew. Sustain. Energy Rev. 15 (2011) 2095–2122. https://doi.org/10.1016/j.rser.2011.01.013.
  • [17] K. Knosala, L. Kotzur, F.T.C. Röben, P. Stenzel, L. Blum, M. Robinius, D. Stolten, Hybrid Hydrogen Home Storage for Decentralized Energy Autonomy, Int. J. Hydrogen Energy. 46 (2021) 21748–21763. https://doi.org/10.1016/j.ijhydene.2021.04.036.
  • [18] M. Marinelli, M. Santarelli, Hydrogen storage alloys for stationary applications, J. Energy Storage. 32 (2020) 101864. https://doi.org/10.1016/j.est.2020.101864.
  • [19] F. Rezaie, R. Roshandel, A.A. Hamidi, Hydrogen management in refineries: Retrofitting of hydrogen networks, electricity and ammonia production, Chem. Eng. Process. - Process Intensif. 157 (2020) 108118. https://doi.org/10.1016/j.cep.2020.108118.
  • [20] M. V. Lototskyy, V.A. Yartys, B.G. Pollet, R.C. Bowman, Metal hydride hydrogen compressors: A review, Int. J. Hydrogen Energy. 39 (2014) 5818–5851. https://doi.org/10.1016/j.ijhydene.2014.01.158.
  • [21] M. Kayfeci, A. Keçebaş, Hydrogen storage, in: Sol. Hydrog. Prod. Process. Syst. Technol., Elsevier, 2019: pp. 85–110. https://doi.org/10.1016/B978-0-12-814853-2.00004-7.
  • [22] J. Deng, R.Z. Wang, G.Y. Han, A review of thermally activated cooling technologies for combined cooling, heating and power systems, Prog. Energy Combust. Sci. 37 (2011) 172–203. https://doi.org/10.1016/j.pecs.2010.05.003.
  • [23] Q. Pan, J. Peng, R. Wang, Experimental study of an adsorption chiller for extra low temperature waste heat utilization, Appl. Therm. Eng. 163 (2019) 114341. https://doi.org/10.1016/j.applthermaleng.2019.114341.
  • [24] M. Chorowski, P. Pyrka, Modelling and experimental investigation of an adsorption chiller using low-temperature heat from cogeneration, Energy. 92 (2015) 221–229. https://doi.org/10.1016/j.energy.2015.05.079.
  • [25] M. V. Lototskyy, I. Tolj, L. Pickering, C. Sita, F. Barbir, V. Yartys, The use of metal hydrides in fuel cell applications, Prog. Nat. Sci. Mater. Int. 27 (2017) 3–20. https://doi.org/10.1016/j.pnsc.2017.01.008.
  • [26] B. Han, A. Chakraborty, Adsorption characteristics of methyl-functional ligand MOF-801 and water systems: Adsorption chiller modelling and performances, Appl. Therm. Eng. 175 (2020) 115393. https://doi.org/10.1016/j.applthermaleng.2020.115393.
  • [27] H.T. Chua, K.C. Ng, A. Malek, T. Kashiwagi, A. Akisawa, B.B. Saha, Modeling the performance of two-bed, silica gel-water adsorption chillers, Int. J. Refrig. 22 (1999) 194–204. https://doi.org/10.1016/S0140-7007(98)00063-2.
  • [28] J.G. Wanjiku, M.A. Khan, P.S. Barendse, A.B. Sebitosi, Analytical sizing of an electrolyser for a small scale wind electrolysis plant, 2010 IEEE Int. Energy Conf. Exhib. EnergyCon 2010. (2010) 10–15. https://doi.org/10.1109/ENERGYCON.2010.5771658.
  • [29] P. Nika, Y. Bailly, F. Lanzetta, Transferts thermiques en écoulements oscillants laminaires incompressibles, Int. J. Refrig. 28 (2005) 353–367. https://doi.org/10.1016/j.ijrefrig.2004.08.012.
  • [30] Https://normag-glas.de/fr/katalog_neu/prozess/FR-6-WARMEUBERTRAGER_PF-System_140930.pdf, CHAPITRE 6 ÉCHANGEURS DE CHALEUR NORMAG PROZESSTECHNIK 2012 SYSTÈME PF 6.1 Indice A Généralités, (2018).
  • [31] C. Park, X. Tang, K.J. Kim, Q. Leland, J. Gottschlich, Metal hydride heat storage technology for directed energy weapon systems, ASME Int. Mech. Eng. Congr. Expo. Proc. 8 (2007) 961–969. https://doi.org/10.1115/IMECE2007-42831.
  • [32] B.P. Tarasov, P. V. Fursikov, A.A. Volodin, M.S. Bocharnikov, Y.Y. Shimkus, A.M. Kashin, V.A. Yartys, S. Chidziva, S. Pasupathi, M. V. Lototskyy, Metal hydride hydrogen storage and compression systems for energy storage technologies, Int. J. Hydrogen Energy. 46 (2021) 13647–13657. https://doi.org/10.1016/j.ijhydene.2020.07.085.
  • [33] M. V. Lototskyy, V.A. Yartys, B.P. Tarasov, M.W. Davids, R. V. Denys, S. Tai, Modelling of metal hydride hydrogen compressors from thermodynamics of hydrogen – Metal interactions viewpoint: Part I. Assessment of the performance of metal hydride materials, Int. J. Hydrogen Energy. 46 (2021) 2330–2338. https://doi.org/10.1016/j.ijhydene.2020.10.090.
  • [34] C.S. Wang, J. Brinkerhoff, Advances in mathematical modeling of hydrogen adsorption and desorption in metal hydride beds with lattice Boltzmann method, Int. J. Hydrogen Energy. 45 (2020) 32179–32195. https://doi.org/10.1016/j.ijhydene.2020.08.171.
  • [35] M. Schicktanz, T. Núñez, Modelling of an adsorption chiller for dynamic system simulation, Int. J. Refrig. 32 (2009) 588–595. https://doi.org/10.1016/j.ijrefrig.2009.02.011.
  • [36] B. Han, A. Chakraborty, Adsorption characteristics of methyl-functional ligand MOF-801 and water systems: Adsorption chiller modelling and performances, Appl. Therm. Eng. 175 (2020) 115393. https://doi.org/10.1016/j.applthermaleng.2020.115393.
  • [37] H. El Mghari, J. Huot, J. Xiao, Analysis of hydrogen storage performance of metal hydride reactor with phase change materials, Int. J. Hydrogen Energy. 44 (2019) 28893–28908. https://doi.org/10.1016/j.ijhydene.2019.09.090.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8c1aa2e-7e60-492e-b255-7dc299844f94
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.