PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Downtime Measurements of Generator-Powered Microgrid During Planned and Unplanned Transfer to Island Mode

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Growing popularity of distributed generation is drawing special attention to communication technologies in smart power grids. This paper provides a detailed overview of the communication protocols utilized in the modern distributed grid laboratory. It describes both wired and wireless technologies used in Smart Grid and presents the remote operation of switching the subsystem from grid mode to island mode operating under nominal conditions. It shows the duration of power outages during a transfer to island mode with diesel generator running on idle - which simulates planned islanding and diesel generator stationary, which simulates unplanned islanding. Latency between registration of disturbance and executing control command is measured. The results obtained are compared with current legislation. The consequences to the power system that are possible in both scenarios are highlighted. Obtained results and description of the communication technologies can be useful for the design of distributed power grids, island-mode power grids, and Smart Grids, as well as for further research in the area of using combustion fuel generators as a primary power supply in the microgrid.
Rocznik
Strony
493--498
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Kraków, Poland
  • AGH University of Science and Technology, Kraków, Poland
  • AGH University of Science and Technology, Kraków, Poland
Bibliografia
  • [1] B. Zhang and J. Baillieul, “Communication and control protocols for load networks in the smart grid,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 11 250-11 256, 2014, 19th IFAC World Congress. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S147466701643404X
  • [2] N. Gai, K. Xue, B. Zhu, J. Yang, J. Liu, and D. He, “An efficient data aggregation scheme with local differential privacy in smart grid,” Digital Communications and Networks, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352864822000049
  • [3] M. Z. Gunduz and R. Das, “Cyber-security on smart grid: Threats and potential solutions,” Computer Networks, vol. 169, p. 107094, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1389128619311235
  • [4] K. Kimani, V. Oduol, and K. Langat, “Cyber security challenges for iot-based smart grid networks,” International Journal of Critical Infrastructure Protection, vol. 25, pp. 36-49, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1874548217301622
  • [5] “http://relflex.eu/about/.”
  • [6] A. Rosini, A. Labella, A. Bonfiglio, R. Procopio, and J. M. Guerrero, “A review of reactive power sharing control techniques for islanded microgrids,” Renewable and Sustainable Energy Reviews, vol. 141, p. 110745, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1364032121000411
  • [7] M. A. Judge, A. Khan, A. Manzoor, and H. A. Khattak, “Overview of smart grid implementation: Frameworks, impact, performance and challenges,” Journal of Energy Storage, vol. 49, p. 104056, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352152X22000950
  • [8] X. Xia, X. Liu, and J. Lou, “Smart substation network fault classification based on a hybrid optimization algorithm,” International Journal of Electronics and Telecommunications, vol. 65, pp. 657-663, 2019.
  • [9] A. Hassan, H. N. Afrouzi, C. H. Siang, J. Ahmed, K. Mehranzamir, and C.-L. Wooi, “A survey and bibliometric analysis of different communication technologies available for smart meters,” Cleaner Engineering and Technology, vol. 7, p. 100424, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2666790822000295
  • [10] “https://assets.new.siemens.com/siemens/assets/api/uuid:884edaea-4708-40cb-833d-c30e282a74f3/sentron-pac-5100-ja-5200-kasikirja.pdf.”
  • [11] L. A. Kumar, V. Indragandhi, R. Selvamathi, V. Vijayakumar, L. Ravi, and V. Subramaniyaswamy, “Design, power quality analysis, and implementation of smart energy meter using internet of things,” Computers & Electrical Engineering, vol. 93, p. 107203, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045790621001993
  • [12] S. Mackay, E. Wright, D. Reynders, and J. Park, “7 - modbus overview,” in Practical Industrial Data Networks, S. Mackay, E. Wright, D. Reynders, and J. Park, Eds. Oxford: Newnes, 2004, pp. 96-114. [Online]. Available: https://www.sciencedirect.com/science/article/pii/B9780750658072500315
  • [13] I. Duncan, J. Hoy, A. Fahey, R. Morgan, S. Nakhaeizadeh, and J. French, “An investigation into the accuracy of follow-on gprs/mobile data cdrs,” Science & Justice, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1355030622000211
  • [14] O. Rholam, M. Tabaa, and F. M. et Abbas Dandache, “Smart device for multi-band industrial iot communications,” Procedia Computer Science, vol. 155, pp. 660-665, 2019, the 16th International Conference on Mobile Systems and Pervasive Computing (MobiSPC 2019),The 14th International Conference on Future Networks and Communications (FNC-2019),The 9th International Conference on Sustainable Energy Information Technology. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1877050919310105
  • [15] C. Rocha-Osorio, J. Solís-Chaves, I. R. Casella, C. Capovilla, J. Azcue Puma, and A. Sguarezi Filho, “Gprs/egprs standards applied to dtc of a dfig using fuzzy - pi controllers,” International Journal of Electrical Power & Energy Systems, vol. 93, pp. 365-373, 2017. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061517303514
  • [16] R. Nale, M. Biswal, and N. Kishor, “A passive communication based islanding detection technique for ac microgrid,” International Journal of Electrical Power & Energy Systems, vol. 137, p. 107657, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061521008887
  • [17] A. N. Akpolat, E. Dursun, and P. Siano, “Inverter-based modeling and energy efficiency analysis of off-grid hybrid power system in distributed generation,” Computers & Electrical Engineering, vol. 96, p. 107476, 2021. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0045790621004316
  • [18] P. Ferrari, A. Flammini, and S. Vitturi, “Performance analysis of profinet networks,” Computer Standards & Interfaces, vol. 28, no. 4, pp. 369-385, 2006. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0920548905000528
  • [19] “En 50160:2010 voltage characteristics of electrity supplied by public electricity networks.”
  • [20] R. M. Kamel, “Distributed generators as reactive power providers and their impacts on standalone micro-grid performance during both symmetrical and unsymmetrical faults,” Renewable Energy Focus, vol. 35, pp. 159-170, 2020. [Online]. Available: https: //www.sciencedirect.com/science/article/pii/S1755008420300545
  • [21] R. V. A. Neves, E. J. Agnoletto, G. B. Reis, R. Q. Machado, and V. A. Oliveira, “Analysis of the maximum available time to switch the operation control mode of a distributed generation during an islanding occurrence,” in 2015 IEEE Eindhoven PowerTech, 2015, pp. 1-5.
  • [22] H. Xianlai, D. Yunlong, and L. Zhiguo, “Strategy of ac-isolated island detecting and control mode switching over in zhoushan project,” in 13th IET International Conference on AC and DC Power Transmission (ACDC 2017), 2017, pp. 1-6.
  • [23] Y. Chen, “Voltages prediction algorithm based on lstm recurrent neural network,” Optik, vol. 220, p. 164869, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0030402620307051
  • [24] J.-H. Menke, N. Bornhorst, and M. Braun, “Distribution system monitoring for smart power grids with distributed generation using artificial neural networks,” International Journal of Electrical Power & Energy Systems, vol. 113, pp. 472-480, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0142061518320805
  • [25] M. W. Khan, M. Zeeshan, A. Farid, and M. Usman, “Qosaware traffic scheduling framework in cognitive radio based smart grids using multi-objective optimization of latency and throughput,” Ad Hoc Networks, vol. 97, p. 102020, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S1570870519304937
  • [26] A. Jolfaei and K. Kant, “A lightweight integrity protection scheme for low latency smart grid applications,” Computers & Security, vol. 86, pp. 471–483, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S016740481831126X
  • [27] O. Selinger-Lutz, R. Brandalik, I. Katz, and R. Hollinger, “Insights from a field test implementation of a robust smart grid concept based on ripple control,” Sustainable Energy, Grids and Networks, vol. 18, p. 100210, 2019. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2352467718303308
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8ba6695-a549-4d9f-89d2-9a9b4ab1243e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.