PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A novel process for extraction of iron from a refractory red mud

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Red mud is a kind of solid waste produced during alumina extraction from bauxite. To extraction valuable iron from red mud, the technology of adding sodium sulfate-segregation roasting-magnetic separation to treat red mud was developed. During the paper, the effects of various process parameters on the extraction of iron by segregation roasting-magnetic separation were studied, and the phase transformation behavior and microstructure of iron are explored. Repeated test results showed that magnetic concentrate (mass percent), TFe of 80.29 % and overall iron recovery of 92.08 %was obtained. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) results indicated that after the segregation roasting, the hematite was transformed into a new metal phase consisting mainly of metallic iron and magnetite. The addition of sodium sulfate during the segregation roasting can obviously improve the efficiency of segregation roasting-magnetic separation for iron extraction.
Rocznik
Strony
125--136
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
autor
  • School of Environment and Resource of Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Provincial Engineering Lab of Non-metallic Mineral Powder Modification and High-value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resource of Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Provincial Engineering Lab of Non-metallic Mineral Powder Modification and High-value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
  • Key Laboratory of Radioactive and Rare Scattered Minerals, Ministry of land and Resources, Shaoguan 512026, China
autor
  • School of Environment and Resource of Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Provincial Engineering Lab of Non-metallic Mineral Powder Modification and High-value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resource of Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Provincial Engineering Lab of Non-metallic Mineral Powder Modification and High-value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resource of Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Provincial Engineering Lab of Non-metallic Mineral Powder Modification and High-value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resource of Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Provincial Engineering Lab of Non-metallic Mineral Powder Modification and High-value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
autor
  • School of Environment and Resource of Southwest University of Science and Technology, Mianyang 621010, China
  • Sichuan Provincial Engineering Lab of Non-metallic Mineral Powder Modification and High-value Utilization, Southwest University of Science and Technology, Mianyang 621010, China
Bibliografia
  • ARCHAMBO, M. S., KAWATRA, S. K., 2020. Utilization of Bauxite Residue: Recovering Iron Values Using the Iron Nugget Process. Miner. Process Extr. Metall. Rev. https://doi.org/10.1080/08827508.2020.1720982.
  • BAI, S.J., WEN, S.M., LIU, D.W., ZHANG, W.B., 2012. Carbothermic reduction of siderite ore with high phosphorus content reinforced by sodium carbonate. Can. Metall. Q. 51(4), 376-382.
  • CHEN, X., GUO, Y.G., DING, S., ZHANG, H.Y., ZHANG, F.Y., XIA, F.Y., WANG, J., ZHOU, M.K., 2019. Utilization of red mud in geopolymer-based pervious concrete with function of adsorption of heavy metal ions. J. Clean Prod. 207, 789-800.
  • CHUN, T.J., ZHU, D.Q., PAN, J., HE, Z., 2014. Preparation of metallic iron powder from red mud by sodium salt roasting and magnetic separation. Can. Metall. Q. 53(2), 183-189.
  • DEAN, J.A., 1999. Lange’s Handbook of Chemistry. 15th Edition, McGraw-Hill, Inc., St. Lous.
  • DING, W., XIAO, J.H., PENG, Y., SHEN, S.Y., CHEN, T., 2019. Iron extraction from red mud using roasting with sodium salt. Miner. Process Extr. Metall. Rev. 3, 1-9.
  • FAN, D.C., NI, W., YAN, A.Y., WANG, J.Y., CUI, W.H., 2015. Orthogonal experiments on direct reduction of carbon- bearing pellets of bayer red mud. J. Iron Steel Res. Int. 22(8), 686-693.
  • GUO, H., GUO, X.M., 2018. Mechanism of Low-Temperature Reduction Degradation of Alumina-Containing Hematite Solid Solution Below 550 degrees C. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 49(6), 3513-3521.
  • HALMANN, M., EPSTEIN, M., STEINFELD, A., 2012. Vacuum carbothermic reduction of bauxite components: A thermodynamic study. Miner. Process Extr. Metall. Rev. 33 (3), 190-203.
  • JAYASANKAR, K., Ray, P.K., CHAUBEY, A.K., PADHI, A., SATAPATHY, B.K., MUKHERJEE, P.S., 2012. Production of pig iron from red mud waste fines using thermal plasma technology. Int. J. Miner. Metall. Mater. 19(8), 679-684.
  • JIANG, T., LIU, M.D., LI, G.H., SUN, N., ZENG, J.H., QIU, G.Z., 2010. Novel process for treatment of high-aluminum limonite ore by reduction roasting with addition of sodium salts. Trans. Nonferrous Met. Soc. China. 20(3), 565.
  • JIANG, M., SUN, T., LIU, Z., KOU, J., LIU, N., ZHANG, S., 2013. Mechanism of sodium sulfate in promoting selective reduction of nickel laterite ore during reduction roasting process. Int. J. Miner. Process. 123, 32-38.
  • KIM, Y., LEE, Y., KIM, M., PARK, H., 2019. Preparation of high porosity bricks by utilizing red mud and mine tailing. J. Clean Prod. 207, 490-497.
  • LI, G.H., LIU, M., RAO, M., JIANG, T., ZHUANG, J., ZHANG, Y., 2014. Stepwise extraction of valuable components from red mud based on reductive roasting with sodium salts. J. Hazard. Mater. 280, 774-780.
  • LI, G.H., JIANG, T., LIU, M., ZHOU, T., FAN, X., QIU, G., 2010. Beneficiation of high-aluminium-content hematite ore by soda ash roasting. Miner. Process Extr. Metall. Rev. 31 (3), 150-64.
  • LI, Y., MIN, X., KE, Y., LIU, D., TANG, C., 2019. Preparation of red mud-based geopolymer materials from mswi fly ash and red mud by mechanical activation. Waste Manage. 83, 202-208.
  • LIU, W., YANG, J., XIAO, B., 2009. Application of Bayer red mud for iron recovery and building material production from alumosilicate residues. J. Hazard. Mater. 161(1), 474-478.
  • LIU, Y.J., ZUO, K.S., YANG, G., SHANG, Z., ZHANG, J.B., 2016. Recovery of ferric oxide from bayer red mud by reduction roasting-magnetic separation process. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31(2), 404-407.
  • LIU, Z.Y., ZHANG, S., HU, D., ZHANG, Y.S., LV, H.L., LIU, C., CHEN, Y.D., SUN, J., 2019. Paraffin/red mud phase change energy storage composite incorporated gypsum-based and cement-based materials: Microstructures, thermal and mechanical properties. J. Hazard. Mater. 364, 608-620.
  • MENG, Q.M., LI, J.X., WEI, R.F., LONG, H.M., CHUN, T.J., WANG, P., 2018. Effects of gangue compositions on reduction process of carbon-bearing iron ore pellets. J. Iron Steel Res. Int. 25(11), 1105-1112.
  • PARAMGURU, R.K., RATH, P.C., MISRA, V.N., 2004. Trends in red mud utilization–a review. Miner. Process Extr. Metall. Rev. 26(1), 1-29.
  • POMIRO, F.J., FOUGA, G.G., BOHE, A.E., 2013. Kinetic Study of Europium Oxide Chlorination. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 44(6), 1509-1519.
  • SHREY, A., VEERANJANEYULU, R., NIKHIL, D., 2018. Microwave reduction of red mud for recovery of iron values. J. SUSTAIN. METALL, 4, 427-436.
  • SUI, Y.L., GU, Y.F., ANDREW, Y.T., JIANG, T., CHEN, F., QIU, G.Z., 2015. Reduction roasting–magnetic separation of vanadium tailings in presence of sodium sulfate and its mechanisms. Rare Metals. 35(12),954-960.
  • XIAO, J.H., DING, W., PENG, Y., WU, Q., CHEN, Z., WANG, Z., PENG, T., 2019. Upgrading iron and removing phosphorus of high phosphorus oolitic iron ore by segregation roasting with calcium chloride and calcium hypochlorite. Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci. 55(3)B, 305-314.
  • XIAO, J.H., DING, W., PENG, Y., CHEN, T., ZOU, K., WANG, Z., 2020. Extraction of Nickel from Garnierite Laterite Ore Using Roasting and Magnetic Separation with Calcium Chloride and Iron Concentrate. Minerals, 10, 352.
  • XIAO, J.H., ZHANG, Y. S., 2020. Extraction of Cobalt and Iron from refractory Co-bearing Sulfur Concentrate. Processes. 8(2), 200.
  • XIAO, J.H., ZOU, K., DING, W., PENG, Y., CHEN, T. 2020. Extraction of Lead and Zinc from a Rotary Kiln Oxidizing Roasting Cinder. Metals. 10(4), 465.
  • YU, W., SUN, T., CUI, Q., 2014. Can sodium sulfate be used as an additive for the reduction roasting of high-phosphorus oolitic hematite ore?. Int. J. Miner. Process. 133, 119-122.
  • ZHAO, Q., MILLER, J.D., WANG, X.M., 2010. Recent developments in the beneficiation of Chinese bauxite. Miner. Process Extr. Metall. Rev. 31(2), 111-119.
  • ZHU, D.Q., CHUN, T.J., PAN, J., HE, Z., 2012. Recovery of Iron From High-Iron Red Mud by Reduction Roasting with Adding Sodium Salt. J. Iron Steel Res. Int. 19(8), 1-5.
Uwagi
This work was supported by the Sichuan Science and Technology Program (2018FZ0092); Open Foundation of the Key Laboratory of Radioactive and Rare and Sparse Minerals of the Ministry of Land and Resources (RRSM-KF2018-02); Postgraduate Innovation Fund Project by Southwest University of Science and Technology(20ycx0026); Open Foundation of the State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology (ZR201801).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8ba346c-b5ea-42df-a838-fafa66487398
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.