PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Laser Metal Deposition and Wire Arc Additive Manufacturing of Materials: An Overview

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing (AM) is a process that joins similar or dissimilar materials into application-oriented objects in a wide range of sizes and shapes. This article presents an overview of two additive manufacturing techniques; namely Laser metal deposition (LMD) and Wire arc additive manufacturing (WAAM). In LMD, metallic powders are contained in one or more chambers, which are then channelled through deposition nozzles. A laser heats the particles to produce metallic beads, which are deposited in layers with the aid of an in-built motion system. In WAAM, a high voltage electric arc functions as the heat source, which helps with ensuring deposition of materials, while materials in wire form are used for the feedstock. This article highlights some of the strengths and challenges that are offered by both processes. As part of the authors’ original research work, Ti-6Al-4V, Stainless steel 316L and Al-12Si were prepared using LMD, while the WAAM technique was used to prepare two Al alloys; Al-5356 and CuAl8Ni2. Microstructural analysis will focus on similarity and differences in grains that are formed in layers. This article will also offer an overall comparison on how these samples compare with other materials that have been prepared using LMD and WAAM.
Twórcy
autor
  • Flinders University, Institute for Nanoscale Science and Technology, Adelaide, South Australia
autor
  • Flinders University, Institute for Nanoscale Science and Technology, Adelaide, South Australia
  • Ecole Centrale de Nantes, Gem, UMR CNRS 6183 France
  • Flinders University, Institute for Nanoscale Science and Technology, Adelaide, South Australia
Bibliografia
  • [1] H. Lipson, M. Kurman, Fabricated: The new world of 3D printing, John Wiley & Sons, 2013.
  • [2] W. E. Frazier, Journal of Materials Engineering and Performance 23, 1917-1928 (2014).
  • [3] M. Marya, V. Singh, S. Marya, J. Y. Hascoet, Metallurgical and Materials Transactions B 46, 1654-1665 (2015).
  • [4] M. Marya, V. Singh, Y. Lu, J.-Y. Hascoet, S. Marya, in: TMS 2015 144th Annual Meeting & Exhibition, Springer pp. 413-420, 2015.
  • [5] H. El Cheikh, B. Courant, J.-Y. Hascoët, R. Guillén, Journal of materials processing technology 212, 1832-1839 (2012).
  • [6] K. Zhang, S. Wang, W. Liu, X. Shang, Materials & Design 55, 104-119 (2014)
  • [7] S. W. Williams, F. Martina, A. C. Addison, J. Ding, G. Pardal, P. Colegrove, Materials Science and Technology 32, 641-647 (2016).
  • [8] J. Gordon, C. Haden, H. Nied, R. Vinci, D. Harlow, Materials Science and Engineering: A, 724, 431-438 (2018).
  • [9] J.-Y. Hascoët, J. Parrot, P. Mognol, E. Willmann, Welding in the World 62, 249-257 (2018)
  • [10] A. Queguineur, G. Rückert, F. Cortial, J. Hascoët, Welding in the World 62, 259-266 (2018).
  • [11] B. Yin, H. Ma, J. Wang, K. Fang, H. Zhao, Y. Liu, Materials Letters 190, 64-66 (2017).
  • [12] T. Abe, H. Sasahara, Precision Engineering 45, 387-395 (2016).
  • [13] R. Unocic, J. DuPont, Metallurgical and materials transactions B 35, 143-152 (2004).
  • [14] D. Ding, Z. Pan, D. Cuiuri, H. Li, The International Journal of Advanced Manufacturing Technology 81, 465-481 (2015).
  • [15] R. Ponche, O. Kerbrat, P. Mognol, J.-Y. Hascoet, Robotics and Computer-Integrated Manufacturing 30, 389-398 (2014).
  • [16] A. Reichardt, R. P. Dillon, J. P. Borgonia, A. A. Shapiro, B. W. McEnerney, T. Momose, P. Hosemann, Materials & Design 104, 404-413 (2016).
  • [17] G. Dinda, A. Dasgupta, J. Mazumder, Materials Science and Engineering A 509, 98-104 (2009)
  • [18] J.-Y. Hascoet, S. Marya, M. Marya, V. Singh, Proceedings of the 1st International Conference on Progress in Additive Manufacturin 5, 133-137 (2014).
  • [19] P. Muller, P. Mognol, J.-Y. Hascoet, Journal of Materials Processing Technology 213, 685-692 (2013)
  • [20] H. El Cheikh, B. Courant, S. Branchu, X. Huang, J.-Y. Hascoët, R. Guillén, Optics and Lasers in Engineering 50, 1779-1784 (2012) .
  • [21] L. Ladani, J. Razmi, S. F. Choudhury, Journal of Engineering Materials and Technology 136, 031006 (2014).
  • [22] R. M. Mahamood, E. T. Akinlabi, M. Shukla, S. Pityana, Materials & Design 50, 656-666 (2013)
  • [23] C. Qiu, G. Ravi, C. Dance, A. Ranson, S. Dilworth, M. M. Attallah, Journal of Alloys and Compounds 629, 351-361 (2015).
  • [24] L. Bian, S. M. Thompson, N. Shamsaei, Jom 67, 629-638 (2015).
  • [25] C. Shen, Z. Pan, Y. Ma, D. Cuiuri, H. Li, Additive Manufacturing, 720-26 (2015)
  • [26] J. Gu, B. Cong, J. Ding, S. W. Williams, Y. Zhai, in: Proceedings of the 25th Annual International Solid Freeform Fabrication Symposium, Austin, TX, USA, 2014, pp. 4-6.
  • [27] M. Bermingham, D. Kent, H. Zhan, D. StJohn, M. Dargusch, Acta Materialia 91, 289-303 (2015).
  • [28] F. Wang, S. Williams, M. Rush, The international journal of advanced manufacturing technology 57, 597-603 (2011).
  • [29] F. Wang, S. Williams, P. Colegrove, A. A. Antonysamy, Metallurgical and Materials Transactions A 44, 968-977 (2013).
  • [30] P. Kobryn, E. Moore, S. Semiatin, Scripta Materialia 43, 299-305 (2000).
  • [31] E. Brandl, A. Schoberth, C. Leyens, Materials Science and Engineering A 532, 295-307 (2012).
  • [32] A. Antonysamy, University of Manchester, ( 2012).
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8b5dae9-1b49-45d4-aa27-d997bf298491
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.