PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fabricated electromechanical resonator sensor for liquid viscosity measurement

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The properties of a mechanical resonator provide a valuable ability to measure liquid density and viscosity. The viscosity of liquids is of interest to researchers in both industry and medicine. In this paper, a viscosity sensor for liquids is proposed, which is designed based on an electromechanical resonator. In the proposed sensor, a capacitor is used as an electrostatic actuator. The capacitor is also used to monitor the frequency changes of the proposed resonator. The range of displacement of the resonator and capacitor in response to different fluids under test varies according to their viscosity. The design of the proposed sensor and its electrostatic and mechanical simulations are reported in this paper. Also, the effect of viscosity of several different liquids on its performance has been analyzed and presented experimentally using a prototype.
Rocznik
Strony
223--234
Opis fizyczny
Bibliogr. 45 poz., rys., tab., wykr., wzory
Twórcy
autor
  • Sahand University of Technology, Tabriz, Iran
Bibliografia
  • [1] Kassim, M. S., & Sarow, S. A. (2020). Flows of Viscous Fluids in Food Processing Industries: A review. IOP Conference Series: Materials Science and Engineering (Vol. 870, No. 1, p. 012032). IOP Publishing. https://doi.org/10.1088/1757-899X/870/1/012032
  • [2] Yildirim, C., Şenyol, A. M., & Kamber, D. (2001). Blood viscosity and blood pressure: role of temperature and hyperglycemia. American Journal of Hypertension, 14(5), 0-438. https://doi.org/10.1016/s0895-7061(00)01260-7
  • [3] Chen, G., Zhao, L., Liu, Y. W., Liao, F. L., Han, D., & Zhou, H. (2012). Regulation of blood viscosity in disease prevention and treatment. Chinese Science Bulletin, 57(16), 1946-1952. https://doi.org/10.1007/s11434-012-5165-4
  • [4] Sun, G., Yang, L., Wang, W., Zhang, S., Luo, Z., Wu, G., Liu, X., Hao, D., Yang, Y., & Li, X. (2020). An Algorithm for the Noninvasive and Personalized Measurement of Microvascular Blood Viscosity Using Physiological Parameters. BioMed Research International, 2020, 1-7. https://doi.org/10.1155/2020/7013212
  • [5] Surabhi, J., Sherman, H., & Srikar, V. (2014). Design strategies for controlling damping in micromechanical and nanomechanical resonators. EPJ Techniques and Instrumentation, 1(1), 1-14. https://doi.org/10.1140/epjti5
  • [6] Won, D-J., Lee, S., & Kim, J. (2020). Analysis of liquid-type proof mass under oscillating conditions. Micro and Nano Systems Letters, 8(1), 1-7. https://doi.org/10.1186/s40486-020-00115-y
  • [7] Zhang, K., Chen, Z., Zhu, Q., Jiang, Y., Liu, W., & Wu, P. (2018). Damping Force and Loading Position Dependence of Mass Sensitivity of Magnetoelastic Biosensors in Viscous Liquid. Sensors, 19(1), 1-9. https://doi.org/10.3390/s19010067
  • [8] Eidi, A., Badri-Ghavifekr, H., & Shamsi, M. (2019). A Novel Biosensor Based on Micromechanical Resonator Array for Lab-On-a-Chip Applications. Sensing and Imaging, 20(1), 1-10. https://doi.org/10.1007/s11220-019-0261-z
  • [9] Eidi, A., Shamsi, M., & Badri-Ghavifekr, H. (2022). Design and evaluation of a micro resonator structure as a biosensor for droplet analysis with a standard fabrication method. Sensor Review, 42(2), 263-273. https://doi.org/10.1108/SR-07-2021-0209
  • [10] Eidi, A. (2022). Optimized cantilever sensor based on parallel high dielectric material. Sensing and Imaging, 23(1), 1-10. https://doi.org/10.1007/s11220-022-00381-7
  • [11] Eidi, A. (2022). An Ultra-Low Frequency and Low-Pressure Capacitive Blood Pressure Sensor Based on Micro-Mechanical Resonator. Sensing and Imaging, 23(35), 1-10. https://doi.org/10.1007/s11220-022-00398-y
  • [12] Eidi, A. (2023). Modeling and simulation of an ultra-low frequency and low-pressure resonator. COMPEL-The international journal for computation and mathematics in electrical and electronic engineering, 42(2), 673-684. https://doi.org/10.1108/COMPEL-07-2022-0239
  • [13] Arsenjuk, L., Wiesehahn, M., Zimmermann, E. M., Katschan, W., & Agar, D. W. (2020). Capacitive determination of wall-film thickness in liquid-liquid slug flow and its application as a non-invasive microfluidic viscosity sensor. Sensors and Actuators A: Physical, 315, 112342. https://doi.org/10.1016/j.sna.2020.112342
  • [14] Heinisch, M., Voglhuber-Brunnmaier, T., Reichel, E. K., Dufour, I., & Jakoby, B. (2015). Electromagnetically driven torsional resonators for viscosity and mass density sensing applications. Sensors and Actuators A: Physical, 229, 182-191. https://doi.org/10.1016/j.sna.2015.03.033
  • [15] Abdallah, A., Heinisch, M., & Jakoby, B. (2013). Measurement error estimation and quality factor improvement of an electrodynamic-acoustic resonator sensor for viscosity measurement. Sensors and Actuators A: Physical, 199, 318-324. https://doi.org/10.1016/j.sna.2013.05.033
  • [16] Brouwer, M. D., Gupta, L. A., Sadeghi, F., Peroulis, D., & Adams, D. (2012). High temperature dynamic viscosity sensor for engine oil applications. Sensors and Actuators A: Physical, 173(1), 102-107. https://doi.org/10.1016/j.sna.2011.10.024
  • [17] Cakmak, O., Ermek, E., Kilinc, N., Yaralioglu, G. G., & Urey, H. (2015). Precision density and viscosity measurement using two cantilevers with different widths. Sensors and Actuators A: Physical, 232, 141-147. https://doi.org/10.1016/j.sna.2015.05.024
  • [18] Sathiya, S., & Vasuki, B. (2016). A structural tailored piezo actuated cantilever shaped 2-DOF resonators for viscosity and density sensing in liquids. Sensors and Actuators A: Physical, 247, 277-288. https://doi.org/10.1016/j.sna.2016.05.052
  • [19] Tröls, A., Clara, S., & Jakoby, B. (2016). A low-cost viscosity sensor based on electrowetting on dielectrics (EWOD) forces. Sensors and Actuators A: Physical, 244, 261-269. https://doi.org/10.1016/j.sna.2016.04.047
  • [20] Dias, R. A., de Graaf, G., Wolffenbuttel, R. F., & Rocha, L. A. (2014). Gas viscosity sensing based on the electrostatic pull-in time of microactuators. Sensors and Actuators A: Physical, 216, 376-385. https://doi.org/10.1016/j.sna.2014.05.004
  • [21] Heinisch, M., Reichel, E. K., Dufour, I., & Jakoby, B. (2012). Tunable resonators in the low kHz range for viscosity sensing. Sensors and Actuators A: Physical, 186, 111-117. https://doi.org/10.1016/j.sna.2012.03.009
  • [22] Sparks, D., Smith, R., Cruz, V., Tran, N., Chimbayo, A., Riley, D., & Najafi, N. (2009). Dynamic and kinematic viscosity measurements with a resonating microtube. Sensors and Actuators A: Physical, 149(1), 38-41. https://doi.org/10.1016/j.sna.2008.09.013
  • [23] Heinisch, M., Voglhuber-Brunnmaier, T., Reichel, E. K., Dufour, I., & Jakoby, B. (2014). Reduced order models for resonant viscosity and mass density sensors. Sensors and Actuators A: Physical, 220, 76-84. https://doi.org/10.1016/j.sna.2014.09.006
  • [24] Jakoby, B., Beigelbeck, R., Keplinger, F., Lucklum, F., Niedermayer, A., Reichel, E. K., Riesch, C., Voglhuber-Brunnmaier, T., & Weiss, B. (2010). Miniaturized sensors for the viscosity and density of liquids-performance and issues. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 57(1), 111-120. https://doi.org/10.1109/TUFFC.2010.1386
  • [25] Hannes, A., Stefan, C., Roman, B., Samir, C., Franz, K., & Bernhard, J. (2012). Sensing the characteristic acoustic impedance of a fluid utilizing acoustic pressure waves. Sensors and Actuators A: Physical, 186, 94-99. https://doi.org/10.1016/j.sna.2012.02.050
  • [26] Kanazawa, K. K., & Gordon, J. G. (1985). Frequency of a quartz microbalance in contact with liquid. Analytical Chemistry, 57(8), 1770-1771. https://doi.org/10.1021/ac00285a062
  • [27] Riesch, C., Jachimowicz, A., Keplinger, F., Reichel, E. K., & Jakoby, B. (2008, October). A micromachined doubly-clamped beam rheometer for the measurement of viscosity and concentration of silicon-dioxide-in-water suspensions. In SENSORS, 2008 IEEE (pp. 391-394). IEEE. https://doi.org/10.1109/icsens.2008.4716461
  • [28] Reichel, E. K., Riesch, C., Keplinger, F., Kirschhock, C. E., & Jakoby, B. (2010). Analysis and experimental verification of a metallic suspended plate resonator for viscosity sensing. Sensors and Actuators A: Physical, 162(2), 418-424. https://doi.org/10.1016/j.sna.2010.02.017
  • [29] Martin, S. J., Granstaff, V. E., & Frye, G. C. (1991). Characterization of a quartz crystal microbalance with simultaneous mass and liquid loading. Analytical Chemistry, 63(20), 2272-2281. https://doi.org/10.1021/ac00020a015
  • [30] Abdallah, A., Reichel, E. K., Voglhuber-Brunmaier, T., Heinisch, M., Clara, S., & Jakoby, B. (2015). Symmetric mechanical plate resonators for fluid sensing. Sensors and Actuators A: Physical, 232, 319-328. https://doi.org/10.1016/j.sna.2015.05.022
  • [31] Matsiev, L. F. (1999, October). Application of flexural mechanical resonators to simultaneous measurements of liquid density and viscosity. In 1999 IEEE Ultrasonics Symposium. Proceedings. International Symposium (Cat. No. 99CH37027) (Vol. 1, pp. 457-460). IEEE. https://doi.org/10.1109/ULTSYM.1999.849439
  • [32] Kucera, M., Wistrela, E., Pfusterschmied, G., Ruiz-Díez, V., Manzaneque, T., Hernando-García, J., Sánchez-R., José L., Jachimowicz, A., Schalko, J., Bittner, A., & Schmid, U. (2014). Design-dependent performance of self-actuated and self-sensing piezoelectric-AlN cantilevers in liquid media oscillating in the fundamental in-plane bending mode. Sensors and Actuators B: Chemical, 200, 235-244. https://doi.org/10.1016/j.snb.2014.04.048
  • [33] Toledo, J., Manzaneque, T., Hernando-García, J., Vázquez, J., Ababneh, A., Seidel, H., Lapuerta, M., & Sánchez-Rojas, J. L. (2014). Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures. Microsystem Technologies, 20(4-5), 945-953. https://doi.org/10.1007/s00542-014-2095-x
  • [34] Van E., Cornelis A., & Sader, J. E. (2007). Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope: Arbitrary mode order. Journal of Applied Physics, 101(4), 44908. https://doi.org/10.1063/1.2654274
  • [35] Wilson, T. L., Campbell, G. A., & Mutharasan, R. (2007). Viscosity and density values from excitation level response of piezoelectric-excited cantilever sensors. Sensors and Actuators A: Physical, 138(1), 44-51. https://doi.org/10.1016/j.sna.2007.04.050
  • [36] Ghatkesar, M. K., Braun, T., Barwich, V., Ramseyer, J-P., Gerber, C., Hegner, M., & Lang, H. P. (2008). Resonating modes of vibrating microcantilevers in liquid. Applied Physics Letters, 92(4), 043106. https://doi.org/10.1063/1.2838295
  • [37] Lin, A. T., Yan, J., & Seshia, A. A. (2009, September). Dynamic response of water droplet coated silicon MEMS resonators. In 2009 IEEE International Ultrasonics Symposium (pp. 669-672). IEEE. https://doi.org/10.1109/ultsym.2009.5441588
  • [38] Wai-Chi, W., Azid, A. A., & Majlis, B. Y. (2010). Formulation of stiffness constant and effective mass for a folded beam. Archives of Mechanics, 62(5), 405-418.
  • [39] Alster, M. (1972). Improved calculation of resonant frequencies of Helmholtz resonators. Journal of Sound and Vibration, 24(1), 63-85. https://doi.org/10.1016/0022-4602(72)90123-x
  • [40] Liu, Y., Wang, D., & Wang, D. F. (2017). Analytical study on effect of piezoelectric patterns on frequency shift and support loss in ring-shaped resonators for biomedical applications. Microsystem Technologies, 23(7), 2899-2909. https://doi.org/10.1007/s00542-016-3112-z
  • [41] Srikar, V. T., & Senturia, S. D. (2002). Thermoelastic damping in fine-grained polysilicon flexural beam resonators. Journal of Microelectromechanical Systems, 11(5), 499-504. https://doi.org/10.1109/JMEMS.2002.802902
  • [42] Fellows, P. J. (2009). Food Processing Technology: Principles and Practice (3rd ed.). Woodhead Publishing.
  • [43] Steiner, L. A. (1938). Viscosity of Aniline between 20°and 100°C. Industrial & Engineering Chemistry Analytical Edition, 10(10), 582-584. https://doi.org/10.1021/ac50126a004
  • [44] Bailey, B. J. (1970). The viscosity of carbon dioxide and acetylene at atmospheric pressure. Journal of Physics D: Applied Physics, 3(4), 550. https://doi.org/10.1088/0022-3727/3/4/312
  • [45] Bleazard, J. G., Sun, T. F., & Teja, A. S. (1996). The thermal conductivity and viscosity of acetic acid-water mixtures. International Journal of Thermophysics, 17, 111-125. https://doi.org/10.1007/BF01448214
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8b305ab-13ca-4e00-86d0-261cf681c4e5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.