PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Coal-to-nuclear modernization of an existing power plant with a IV-th generation nuclear reactor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an analysis of a transition from a coal-fired power plant to a nuclear unit. The main focus is set on the extensive usage of the existing parts of the already operating system. The key problem is the correct matching of a nuclear reactor and the steam island. It is assumed here that the reactor module operates under nominal conditions and the steam turbine is adapted to fit the reactor. The paper describes the numerical model of the steam turbine cycle for the off-design simulations. The developed model allows us to determine the changes in the steam cycle in order to match the required water and steam temperature values at the inlets and the outlets of the steam generator. The paper presents the suggested modifications and the evaluation of the operation after the transition.
Słowa kluczowe
Rocznik
Strony
205--213
Opis fizyczny
Bibliogr. 23 poz.
Twórcy
  • Silesian Univeristy of Technology, ul. Konarskiego 18, Gliwice 44-100, Poland
  • Silesian Univeristy of Technology, ul. Konarskiego 18, Gliwice 44-100, Poland
  • Silesian Univeristy of Technology, ul. Konarskiego 18, Gliwice 44-100, Poland
autor
  • Silesian Univeristy of Technology, ul. Konarskiego 18, Gliwice 44-100, Poland
  • Silesian Univeristy of Technology, ul. Konarskiego 18, Gliwice 44-100, Poland
Bibliografia
  • [1] Laskowski, L., Smyk, A., Jurkowski, R., Ance, J., Wołowicz, M., & Uzunow, N. (2022). Selected aspects of the choice of live steam pressure in PWR nuclear power plant. Archives of Thermo-dynamics, 43(3), 85-109. doi: 10.24425/ather.2022. 143173
  • [2] Jędrzejewski, J., & Hanuszkiewicz-Drapała, M. (2021). Utilization of organic Rankine cycles in a cogeneration system with a high-temperature gas-cooled nuclear reactor – thermodynamic analysis. Archives of Thermodynamics, 42(2), 71-87. doi: 10.24425/ather.2021.137554
  • [3] Banaszkiewicz, M., & Skwarło, M. (2023). Numerical investigations of transient thermal loading of steam turbines for SMR plants. Archives of Thermodynamics, 44(4), 197-220. doi: 10.24425/ather.2023.149715
  • [4] Qvist, S, Gładysz, P., Bartela, Ł., & Sowiżdżał, A. (2021). Retrofit decarbonization of coal power plants - a case study for Poland. Energies, 14(1), 120. doi: 10.3390/en14010120
  • [5] Hansen, J., Jenson, W., Wrobel, A., Stauff, N., Biegel, K., Kim, T., Belles, R., & Omitaomu, F. (2022). Investigating Benefits and Challenges of Converting Retiring Coal Plants into Nuclear Plants. Nuclear Fuel Cycle and Supply Chain. U.S. Department of Energy Report, 13 September, INL/RPT-22-67964.
  • [6] Shultis, J. K., & Faw, R. E. (2017). Nuclear Science and Engineering. 3rd edition. CRC Press, Taylor & Francis Group.
  • [7] Haneklaus, N., Qvist, S., Gładysz, P., & Bartela, Ł. (2023). Why coal-fired power plants should get nuclear-ready. Energy, 280, 128169. doi: 10.1016/j.energy.2023.128169
  • [8] Xu, S., Lu, Y.H.M., Mutailipu, M., Yan, K., Zhang, Y., & Qvist, S. (2022). Repowering Coal Power in China by Nuclear Energy Implementation Strategy and Potential. Energies, 15(3), 1072. doi: 10.3390/en15031072
  • [9] Bartela, Ł., Gładysz, P., Ochmann, J., Qvist, S., & Sancho, L.M. (2022). Repowering a Coal Power Unit with Small Modular Reactors and Thermal Energy Storage. Energies, 15(16), 5830. doi: 10.3390/en15165830
  • [10] International Atomic Energy Agency. (2020). Advances in Small Modular Reactor Technology Development, Supplement to: IAEA Advanced Reactors Information System (ARIS), 2020 Edition. https://aris.iaea.org/publications/smr_book_2020.pdf [accessed 28 Nov. 2024]
  • [11] Dąbrowski, M.P., Boettcher, A., Brudek, W., Malesa, J., Muszyński, D., Potempski, S., Skrzypek, E., Skrzypek, M., & Sierchuła, J. (2024). Concept of the Polish high temperature gas-cooled re-actor HTGR-POLA. Nuclear Engineering and Design, 424, 113197, doi: 10.1016/j.nucengdes.2024.113197
  • [12] Weng, T., Zhang, G., Wang, H., Qi, M., Qvist, S., & Zhang, Y. (2024). The impact of coal to nuclear on regional energy system. Energy, 302, 131765. doi: 10.1016/j.energy.2024.131765
  • [13] Van Hee, N., Peremans, H., & Nimmegeers, P. (2024). Economic potential and barriers of small modular reactors in Europe. Renewable and Sustainable Energy Reviews, 203, 114743. doi: 10.1016/j.rser.2024.114743
  • [14] Mignacca, B., & Locatelli, G. (2020). Economics and finance of Small Modular Reactors: A systematic review and research agenda. Renew. Sustain. Energy, 118, 109519. doi: 10.1016/j. rser.2019.109519
  • [15] Ingersoll, E., Gogan, K., Herter, J., & Foss, A. (2020). The ETI Nuclear Cost Drivers Project Full Technical Report. Energy Systems Catapult, Birmingham, UK, 2020.
  • [16] Bartela, Ł., Gładysz, P., Andreades, C., Qvist, S., & Zdeb, J. (2021). Techno-Economic Assessment of Coal-Fired Power Unit Decarbonization Retrofit with KP-FHR Small Modular Reactors. Energies, 14(9), 2557. doi: 10.3390/en14092557
  • [17] Weng, T., Zhang, G., Wang, H., Qi, M., Qvist, S., & Zhang, Y. (2024). The impact of coal to nuclear on regional energy system. Energy, 302, 131765. doi: 10.1016/j.energy.2024.131765
  • [18] Marques, A.C., & Junqueira, T.M. (2022). European energy transition: Decomposing the performance of nuclear power. Energy, 245, 123244. doi: 10.1016/j.energy.2022.123244
  • [19] Khosravi, A., Olkkonen, V., Farsaei, A., & Syri, S. (2020). Replacing hard coal with wind and nuclear power in Finland - impacts on electricity and district heating markets. Energy, 203, 117884. doi: 10.1016/j.energy.2020.117884
  • [20] Abdussami, M. R., Daley, K., Hoelzle, G., & Verma, A. (2024). Investigation of potential sites for coal-to-nuclear energy transi-tions in the United States. Energy Reports, 11, 5383–5399. doi: 10.1016/j.egyr.2024.05.020
  • [21] Kosman, W. (2017). The influence of the measurement inaccuracies on the assessment of the health state of gas turbines in diagnostic systems. Journal of Power Technologies, 97(2), 142-148.
  • [22] Kosman, W., Rusin, A., & Reichel, P. (2023). Application of an energy storage system with molten salt to a steam turbine cycle to decrease the minimal acceptable load. Energy, 266, 126480. doi: 10.1016/j.energy.2022.126480
  • [23] Blandford, E., Brumback, K., Fick, L., Gerardi, C., Haugh, B., Hillstrom, E., Johnson, K., Peterson, P.F., Rubio, F., Sarikurt, F.S., Sen, S., Zhao, H., & Zweibaumet, N. (2020). Kairos power thermal hydraulics research and development. Nuclear Engineering and Design, 364 (3), 110636. doi: 10.1016/j.nucengdes.2020. 110636
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8b14539-c9dd-496e-a37a-cbd1e8eb9a81
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.