PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modele akumulatorów wykorzystywane do oceny ich stanu

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Battery models used for estimate their state
Języki publikacji
PL
Abstrakty
PL
W artykule zaprezentowano problematykę modelowania akumulatorów. Scharakteryzowano właściwości akumulatorów używanych zwłaszcza do zasilania układów małej mocy. Przedstawiono modele wykorzystywane w identyfikacji stanu naładowania akumulatorów, jak i szacowania ich zużycia. Opisano rozwiązania najczęściej stosowane i prezentowane w literaturze.
EN
This paper presents a problem of modeling the batteries. The basic technical parameters of the batteries are specified. Battery models proposed in the literature to estimate the battery state of charge and state of health are described.
Rocznik
Strony
3385--3394
Opis fizyczny
Bibliogr. 31 poz., 1 il. kolor., rys., wykr.
Twórcy
autor
  • Politechnika Częstochowska
Bibliografia
  • 1. batteries.sanyo-component.com
  • 2. Bruce P.G., Freunberger S.A., Hardwick L.J., Tarascon J.M., Li-O2 and Li-S batteries with high energy storage. Nature Materials 11(1), pp. 19-29, 2012.
  • 3. Charkhgard M., Farrokhi M., State-of-charge estimation for Lithium-ion batteries using neural networks and EKF. IEEE Trans. Ind. Electron., Vol. 57, No. 12, pp. 4178-4187, Dec. 2010.
  • 4. Chen M., Rincon-Mora G. A., Accurate electrical battery model capable of predicting runtime and I-V performance. IEEE Trans. Energy Conversion, Vol. 21, No. 2, pp. 504-511. Jun. 2006.
  • 5. Chiasserini C.F., Rao R.R., Energy efficient battery management. IEEE Journal on Selected Areas in Communications, Vol.19, No.7, pp. 1235-1245, Jul. 2001.
  • 6. Dees D. W., Battaglia V. S., Bélanger A., Electrochemical modeling of lithium polymer batteries. Journal of Power Sources, vol. 110, pp. 310-320, 2002.
  • 7. Doyle M., Fuller T.F., Newman J., Modeling of galvanostatic charge and discharge of the Lithium/Polymer/Insertion Cell. Journal Electrochem. Soc., Vol.140, No.6, pp. 1526-1533 June 1993.
  • 8. Hammouche A., Karden E., R., Doncker W.D., Monitoring state-of-charge of Ni-H and Ni-Cd batteries using impedance spectroscopy. Journal of Power Sources, Vol. 127, No. 1-2, pp.105-111, 2004.
  • 9. Hussein A., Batarseh I., An Overview of Generic Battery Models. Power and Energy Society General Meeting, 2011 IEEE pp.1-6, July 2011.
  • 10. Huet F., A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries. Journal of Power Sources, Vol. 70, pp.59-69, 1998.
  • 11. Jenkins N., Ruddell A. J., Two electrical model of the lead-acid battery used in a dynamic voltage restorer. Proc. IEEE Generation, Transmission, and Distribution, Vol. 150, No. 2, pp. 175-182, Mar. 2000.
  • 12. Lee Y.-S., Kuo T.-Y., Wang W.-Y., Fuzzy Neural Network Genetic Approach to Design the SOC Estimator for Battery Powered Electric Scooter. 2004 35th Annunl IEEE Power Electronics Specialists Conference, Aachen, Germany, 2004.
  • 13. Linden D., Reddy T., Handbook of Batteries, 3rd ed., McGraw-Hill 2001.
  • 14. Manwell J., McGowan J., Extension of the kinetic battery model for wind/hybrid power systems. Proceedings of the 5th European Wind Energy Association Conference (EWEC ’94), pp. 284-289, 1994.
  • 15. Nasar S.A., Unnewehr L.E., Electromechanics and Electric Machines. John Wiley 1993.
  • 16. Rakhmatov D.N., Vrudhula S., An analytical high-level battery model for use in energy management of portable electronic systems. Proc. IEEE/ACM Int. Conf. Comput. Aided Design, pp. 488-493, 2001.
  • 17. Salameh Z.M., Casacca M.A., Lynch W.A., A Mathematical Model for Lead-Acid Batteries. IEEE Transactions on Energy Conversions, Vol. 7, No. 1, 1992, pp. 93-97.
  • 18. Shepherd C.M., Design of Primary and Secondary Cells. Journal of The Electrochemical Society, Vol. 112, pp. 657-664, 1965.
  • 19. SimPowerSystem ™ User’s Guide (MatlabR2012a).
  • 20. Singh P., Fennie C., Reisner D., Fuzzy logic modeling of state-of-charge and available capacity of nickel/metal hydride batteries. Journal of Power Sources, Vol. 136, No. 2, 322-333, 2004.
  • 21. Smyshlyaev A., Krstic M., Chaturvedi N., Ahmed J., Kojic A., PDE Model for Thermal Dynamics of a Large Li-Ion Battery Pack. 2011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 01, 2011.
  • 22. Song L., Evans J.W., Electrochemical-thermal model of lithium polymer batteries. J. Electrochem. Soc. Vol.147, No.6, pp.2086-2095, June 2000.
  • 23. Tremblay O., Dessaint L.-A., Dekkiche A.-I., A Generic Battery Model for the Dynamic Simulation of Hybrid Electric Vehicles. IEEE Vehicle Power and Propulsion Conference, Arlington, 2007.
  • 24. Wang J.P., Guo J.G., Ding L., An adaptive Kalman filtering based State of Charge combined estimator for electric vehicle battery pack. Energy Conversion and Management,Vol. 50, No. 12, pp. 3182-3186, Dec. 2009.
  • 25. www.eneloop.info
  • 26. www.hardingenergy.com
  • 27. www.houseofbatteries.com
  • 28. www.gpina.com
  • 29. www.panasonicoembatteries.com
  • 30. www.power-sonic.com
  • 31. www.yuasaeurope.com
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8af6528-fcde-4396-a584-95eed5c16fc3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.