PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on composite manufacturing method of semi-buried 1×32 optical splitter

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, a composite manufacturing method was proposed to reduce the inner surface roughness of silica groove. Firstly, femtosecond laser was used to ablate the silica groove, then, a 5% concentration hydrofluoric acid solution was used to corrode the inner surface of silica groove. Secondly, Su8 adhesive was filled with the groove to form a semi-buried 1×32 optical splitter by doctor blade. The test results showed that the surface roughness Ra was less than 0.2 μm, and average insertion loss of output ports was 21.34 dB, moreover, the uniformity was less than 1.44 dB. Compared with the traditional femtosecond laser ablating method, surface roughness reduced by at least 0.1 μm, and the average insertion loss of output ports was reduced by 1.22 dB, and the uniformity was reduced by 0.41 dB. So, the composite manufacturing method improved the communication performance. It is satisfied with the requirements for optical interconnection in the electro-optical printed circuit boards.
Czasopismo
Rocznik
Strony
185--197
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
  • Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, P.R.China, 430068
autor
  • School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China
  • Hubei Key Laboratory of Modern Manufacturing Quantity Engineering, School of Mechanical Engineering, Hubei University of Technology, Wuhan, Hubei, P.R.China, 430068
Bibliografia
  • [1] SHANGGUAN L., ZHANG D., ZHANG T., CHENG R., WANG J., WANG C., WANG F., HO S.-T., CHEN C., FEI T., Functionalized polymer waveguide optical switching devices integrated with visible optical amplifiers based on an organic gain material, Dyes and Pigments 176, 2020: 108210. https://doi.org/10.1016/j.dyepig.2020.108210
  • [2] JIANG M., ZHANG D., LIAN T., WANG L., NIU D., CHEN C., LI Z., WANG X., On-chip integrated optical switch based on polymer waveguides, Optical Materials 97, 2019: 109386. https://doi.org/10.1016/j.optmat.2019.109386
  • [3] GIACON V.M., DA SILVA PADILHA G., BARTOLI J.R., Fabrication and characterization of polymeric optical by plasma fluorination process, Optik 126(1), 2015: 74-76. https://doi.org/10.1016/j.ijleo.2014.08.152
  • [4] NIEWEGLOWSKI K., LORENZ L., LÜNGEN S., TIEDJE T., WOLTER K.-J., BOCK K., Optical coupling with flexible polymer waveguides for chip-to-chip interconnects in electronic systems, Microelectronics Reliability 84, 2018: 121-126. https://doi.org/10.1016/j.microrel.2018.03.020
  • [5] DE VITTORIO M., TODARO M.T., STOMEO T., CINGOLANI R., COJOC D., DI FABRIZIO E., Two-dimensional photonic crystal waveguide obtained by e-beam direct writing of SU8-2000 photoresist, Microelectronic Engineering 73-74, 2004: 388-391. https://doi.org/10.1016/j.mee.2004.02.075
  • [6] KO F.-H., CHEN J.-K., CHANG F.-C., Fabricating and characterizing oblique polymer structures by electron beam writing on resist-coated SiO2 wafers, Microelectronic Engineering 83(4-9), 2006: 1132-1137. https://doi.org/10.1016/j.mee.2006.01.027
  • [7] KUMAR V.S., TURAGA S.P., TEO E.J., BETTIOL A.A., Fabrication of optical microresonators using proton beam writing, Microelectronic Engineering 102, 2013: 33-35. https://doi.org/10.1016/j.mee.2012.02.017
  • [8] HUANG L., QIN Y., JIN Y., SHI H., GUO H., XIAO L., JIANG Y., Spheroidal trap shell beyond diffraction limit induced by nonlinear effects in femtosecond laser trapping, Nanophotonics 9(14), 2020: 4315-4325. https://doi.org/10.1515/nanoph-2020-0288
  • [9] ZHOU K., SHEN F., YIN G., ZHANG L., Optical fiber micro-devices made with femtosecond laser, [In] Advanced Photonics 2016 (IPR, NOMA, Sensors, Networks, SPPCom, SOF), OSA Technical Digest (online), Optica Publishing Group, 2016: paper SeW3D.1. https://doi.org/10.1364/SENSORS.2016.SeW3D.1
  • [10] HEATH D.J., GRANT-JACOB J.A., FEINAEUGLE M., MILLS B., EASON R.W., Sub-diffraction limit laser ablation via multiple exposures using a digital micromirror device, Applied Optics 56(22), 2017: 6398-6404. https://doi.org/10.1364/AO.56.006398
  • [11] LENG Y., YUN V.E., GOLDHAR J., UV laser fabrication and modification of fiber Bragg gratings by stitching sub-gratings with in situ fluorescence monitoring, Applied Optics 56(24), 2017: 6977-6981. https://doi.org/10.1364/AO.56.006977
  • [12] MIRZA M.A., STEWART G., Theory and design of a simple tunable Sagnac loop filter for multiwavelength fiber lasers, Applied Optics 47(29), 2008: 5242-5252. https://doi.org/10.1364/AO.47.005242
  • [13] WANG Y., LI Y., LIAO C., WANG D.N., YANG M., LU P., High-temperature sensing using miniaturized fiber in-line Mach–Zehnder interferometer, IEEE Photonics Technology Letters 22(1), 2009: 39-41. https://doi.org/10.1109/LPT.2009.2035638
  • [14] DAVIS K.M., MIURA K., SUGIMOTO N., HIRAO K., Writing waveguides in glass with a femtosecond laser, Optics Letters 21(21), 1996: 1729-1731. https://doi.org/10.1364/OL.21.001729
  • [15] TAO Q., LUO F., YUAN J., SHI L., HU J., DING X., WANG R., CAO L., Performance analysis of 45° coupled structure of optical waveguide based on electro-optical printed circuit board, Optik 122(1), 2011: 76-80. https://doi.org/10.1016/j.ijleo.2010.02.008
  • [16] TAO Q., LU B., ZHAI Z., CHENG J., LIU D., Manufacturing a 1 × 16 air-cladding polymeric optical splitter for electro-optical printed circuit boards by femtosecond laser, Optical Engineering 59(1), 2020: 017105. https://doi.org/10.1117/1.OE.59.1.017105
  • [17] MANNION P.T., MAGEE J., COYNE E., O’CONNOR G.M., GLYNN T.J., The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air, Applied Surface Science 233(1-4), 2004: 275-287. https://doi.org/10.1016/j.apsusc.2004.03.229
  • [18] YANG Z., WANG D., YANG D., WANG Y., RONG L., Optimized design of 1×4 optical splitter based on annealed proton exchanged waveguides in LiNbO3 crystal, Proceedings of the SPIE, Vol. 9043, International Conference on Optical Instruments and Technology - Optoelectronic Devices and Optical Signal Processing, 2013: 904306. https://doi.org/10.1117/12.2038166
  • [19] SCHLAAK H.F., BRANDENBURG A., SULZ G., Integrated optical circuits with curved waveguides, Proceedings of the SPIE, Vol. 0651, Integrated Optical Circuit Engineering III, 1986: 38-45. https://doi.org/10.1117/12.938127
  • [20] SUN C., ZHAO J., WANG Z., DU L., HUANG W., Broadband and high uniformity Y junction optical beam splitter with multimode tapered branch, Optik 180, 2019: 866-872. https://doi.org/10.1016/j.ijleo.2018.12.013
  • [21] SUZUKI K., KONOIKE R., HASEGAWA J., SUDA S., MATSUURA H., IKEDA K., NAMIKI S., KAWASHIMA H., Low-insertion-loss and power-efficient 32 × 32 silicon photonics switch with extremely high-Δ silica PLC connector, Journal of Lightwave Technology 37(1), 2019: 116-122. https://doi.org/10.1109/JLT.2018.2867575
  • [22] ZAMHARI N., EHSAN A.A., Large cross-section rib silicon-on-insulator (SOI) S-bend waveguide, Optik 130, 2017: 1414-1420. https://doi.org/10.1016/j.ijleo.2016.11.161
  • [23] BASAK A., DEKA H., MONDAL A., SINGH U.P., Impact of post-deposition annealing in Cu2SnS3 thin film solar cells prepared by doctor blade method, Vacuum 156, 2018: 298-301. https://doi.org/10.1016/j.vacuum.2018.07.049
  • [24] ZHANG H., HEALY N., SHEN L., HUANG C.C., HEWAK D.W., PEACOCK A.C., Enhanced all-optical modulation in a graphene-coated fibre with low insertion loss, Scientific Reports 6, 2016: 23512. https://doi.org/10.1038/srep23512
  • [25] MOHAMMED P.A., Integration of self-standing X- and Y- shaped polymer coupler and splitter with single mode optical fibers, Optical Materials 111, 2021: 110685. https://doi.org/10.1016/j.optmat.2020.110685
  • [26] LIN Q., FAN Z.J., WANG W., YAN Z., ZHENG Q., MEI X., The effect of spot overlap ratio on femtosecond laser planarization processing of SiC ceramics, Optics and Laser Technology 129, 2020: 106270. https://doi.org/10.1016/j.optlastec.2020.106270
  • [27] YANG Y., LOU R., CHEN X., FAN W.-H., BAI J., CAO W., CHENG G., SI J.-H., Influence of energy fluence and overlapping rate of femtosecond laser on surface roughness of Ti-6Al-4V, Optical Engineering 58(10), 2019: 106107. https://doi.org/10.1117/1.OE.58.10.106107
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8a6f716-6a10-4c81-a2d9-a4ec6f35aa33
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.