Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The presentation of landforms in two-dimensional graphics may not always be clear and understandable to every viewer. The presentation of landforms, as well as other types of characteristics and issues in three-dimensional space can bring many advantages in the process of better understanding of the surrounding reality. The primary purpose of this research is to put forward a simple scheme, accessible to any Geographic Information Systems user, for generating 3D physical terrain models for any area of the Earth. The presented scheme can be used anywhere in the world, however, for the purpose of illustrating its capabilities, a case study of a selected area – the Tatra Mountain range – was conducted in this paper. As part of the study, a 3D model was developed based on a Digital Elevation Model obtained from an open source, i.e. MapTiler. An indisputable advantage of the study is that the designed process flow in its structure takes into account only generally available tools and software (the model was prepared in the QGIS program). However, a certain limitation is the process of printing itself, which depends on the availability of specialized printing equipment. In this case study, FDM (Fused Deposition Modeling) technology was used for printing, and the model itself was prepared on a Creality Ender 7 printer. The proposed flowchart, on the one hand, unifies and simplifies the process of creating physical 3D models, while on the other hand, it provides opportunities for GIS users and developers to develop the proposed solution.
Czasopismo
Rocznik
Tom
Strony
32--45
Opis fizyczny
Bibliogr. 39 poz., mapy, rys., zdj.
Twórcy
autor
- Poznan University of Life Sciences, Faculty of Environmental and Mechanical Engineering, Poznań, Poland
autor
- Poznan University of Life Sciences, Faculty of Environmental and Mechanical Engineering, Poznań, Poland
Bibliografia
- Anastasiou, A., Tsirmpas, C., Rompas, A., Giokas, K., & Koutsouris, D. (2013). 3D printing: Basic concepts mathematics and technologies. 13th IEEE International Conference on BioInfomatics and BioEngineering, Chania, Greece, 10–13 November, 1–4. https://doi.org/10.1109/BIBE.2013.6701672
- Chandra, S., Raj, U., Sonkar, R., Yadav, U., Srivastava, P., Sanghmitra, & Maurya, A. P. (2022). Visualization Raster Based 3D Digital Elevation Model on WEB using QGIS. International Journal of Computer Science and Mobile Applications IJCSMA, 10(5), 1–6. https://doi.org/10.5281/zenodo.6568675
- Chen, S., Tang, Z., Zhou, H., & Cheng, J. (2019). Extracting topographic data from online sources to generate a Digital Elevation Model for highway preliminary geometric design. Journal of Transportation Engineering, Part A: Systems, 145(4). https://doi.org/10.1061/JTEPBS.0000212
- Dawid, W., & Pokonieczny, K. (2020). Analysis of the possibilities of using different resolution Digital Elevation Models in the study of microrelief on the example of terrain passability. Remote Sensing, 12(24), 4146. https://doi.org/10.3390/rs12244146
- Galin, E., Guérin, E., Peytavie, A., Cordonnier, G., Cani, M. P., Benes, B., & Gain, J. (2019). A review of digital terrain modeling. Computer Graphics Forum, 38(2), 553–577 https://doi.org/10.1111/cgf.13657
- Geymen, A. (2014). Digital Elevation Model (DEM) generation using the SAR interferometry technique. Arabian Journal of Geosciences, 7, 827–837. https://doi.org/10.1007/s12517-012-0811-3
- Gołębiewski, P., Wiencław, P., Cimek, J., Socha, P., Pysz, D., Filipkowski, A., Stępniewski, G., Czerwińska, O., Kujawa, I., Stępień R., Kasztelanic, R., Burgs, A., & Buczyński, R. (2024). 3D soft glass printing of preforms for microstructured optical fibers. Additive Manufacturing, 79, 103899. https://doi.org/10.1016/j.addma.2023.103899
- Gu, D. (2016). Materials creation adds new dimensions to 3D printing. Science Bulletin, 61(22), 1718–1722. https://doi.org/10.1007/s11434-016-1191-y
- Guth, P. L., van Niekerk, A., Grohmann, C. H., Muller, J.-P., Hawker, L., Florinsky, I. V., Gesch, D., Reuter, H. I., Herrera-Cruz, V., Riazanoff, S., López-Vázquez, C., Carabajal, C. C., Albinet, C., & Strobl, P. (2021). Digital Elevation Models: terminology and definitions. Remote Sensing, 13(18), 3581. https://doi.org/10.3390/rs13183581
- Habib, M., Alzubi, Y., Malkawi, A., & Awwad, M. (2020). Impact of interpolation techniques on the accuracy of large-scale Digital Elevation Model. Open Geosciences, 12(1), 190–202. https://doi.org/10.1515/geo-2020-0012
- Harding, C., Hasiuk, F., & Wood, A. (2021). Touch-Terrain-3D Printable Terrain Models. ISPRS International Journal of Geo-Information, 10(3), 108. https://doi.org/10.3390/ijgi10030108
- Hasiuk, F. (2014). Making things geological: 3-D printing in the geosciences. GSA Today, 24(8), 28–29. https://doi.org/10.1130/GSATG211GW.1
- Hasiuk, F., Harding, C., Renner, A. R., & Winer, E. (2017). TouchTerrain: A simple web-tool for creating 3D-printable topographic models. Computers & Geosciences, 109, 25–31. https://doi.org/10.1016/j.cageo.2017.07.005
- Horowitz, S. S., & Schultz, P. H. (2014). Printing Space: using 3D printing of Digital Terrain Models in geosciences education and research. Journal of Geoscience Education, 62(1), 138–145. https://doi.org/10.5408/13-031.1
- MapTiler. (2024). https://www.maptiler.com
- Kete, P. (2016). Physical 3D map of the Planica Nordic Center, Slovenia: Cartographic Principles and Techniques Used with 3D Printing. Cartographica: The International Journal for Geographic Information and Geovisualization, 51(1), 1–11. https://doi.org/10.3138/cart.51.1.3154
- Lepczyk, C. A., Wedding, L. M., Asner, G. P., Pitt-man, S. J., Goulden, T., Linderman, M. A., Gang, J., & Wright, R. (2021). Advancing landscape and seascape ecology from a 2D to a 3D science. Bio-Science, 71(6), 596–608. https://doi.org/10.1093/biosci/biab001
- Lütjens, M., Kersten, T. P., Dorschel, B., & Tschirschwitz, F. (2019). Virtual Reality in cartography: Immersive 3D visualization of the Arctic Clyde Inlet (Canada) using Digital Elevation Models and bathymetric data. Multimodal Technologies and Interaction, 3(1), 9. https://doi.org/10.3390/mti3010009
- Lyu, Y., Zhao, H., Wen, X., Lin, L., Schlarb, A. K., & Shi, X. (2021). Optimization of 3D printing parameters for high–performance biodegradable materials. Journal of Applied Polymer Science, 138(32), 50782. https://doi.org/10.1002/app.50782
- Mach, R., & Petschek, P. (2007). Visualization of digital terrain and landscape data: a manual. Springer Berlin. https://doi.org/10.1007/978-3-540-30491-3
- Mesa-Mingorance, J. L., & Ariza-López, F. J. (2020). Accuracy assessment of Digital Elevation Models (DEMs): a critical review of practices of the past three decades. Remote Sensing, 12(16), 2630. https://doi.org/10.3390/rs12162630
- Mitasova, H., Harmon, R. S., Weaver, K. J., Lyons, N. J., & Overton, M. F. (2012). Scientific visualization of landscapes and landforms. Geomorphology, 137(1), 122–137. https://doi.org/10.1016/j.geomorph.2010.09.033
- Mukherjee, S., Joshi, P. K., Mukherjee, S., Ghosh, A., Garg, R. D., & Mukhopadhyay, A. (2013). Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205–217. https://doi.org/10.1016/j.jag.2012.09.004
- Muthusamy, M., Casado, M. R., Butler, D., & Leinster, P. (2021). Understanding the effects of Digital Elevation Model resolution in urban fluvial flood modelling. Journal of Hydrology, 596, 126088. https://doi.org/10.1016/j.jhydrol.2021.126088
- Oswald, C. J., Rinner, C., & Robinson, A. L. (2019). Applications of 3D printing in physical geography education and urban visualization. Cartographica: The International Journal for Geographic Information and Geovisualization, 54(4), 278–287. https://doi.org/10.3138/cart.54.4.2018-0007
- Polidori, L., & El Hage, M. (2020). Digital Elevation Model quality assessment methods: a critical review. Remote Sensing, 12(21), 3522. https://doi.org/10.3390/rs12213522
- Rong, Y., Zhang, T., Zheng, Y., Hu, C., Peng, L., & Feng, P. (2020). Three-dimensional urban flood inundation simulation based on digital aerial photogrammetry. Journal of Hydrology, 584, 124308. https://doi.org/10.1016/j.jhydrol.2019.124308
- Shahrubudin, N., Lee, T. C., & Ramlan, R. (2019). An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing, 35, 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089
- Solla, M., Casqueiro, C., & Cuvillo, I. (2020). Approach to generate 3D-printed terrain models using free software and open data sources: Application to military planning. Computer Applications in Engineering Education, 28(3), 477–489. https://doi.org/10.1002/cae.22211
- Thakar, C., Parkhe, S. S., Jain, A., Phasinam, K., Murugesan, G., & Ventayen, R. J. M. (2022). 3D printing: basic principles and applications. Materials Today: Proceedings, 51(5–8), 842–849. https://doi.org/10.1016/j.matpr.2021.06.272
- Wabiński, J., & Kuźma, M. (2017). Wizualizacja obszarów górskich z zastosowaniem druku 3D. Biuletyn Wojskowej Akademii Technicznej, 66(3), 45–61. http://dx.doi.org/10.5604/01.3001.0010.5390
- Wabiński, J., & Mościcka, A. (2019). Natural heritage reconstruction using full-color 3D printing: a case study of the valley of Five Polish Ponds. Sustainability, 11(21), 5907. https://doi.org/10.3390/su11215907
- Walker, M., & Humphries, S. (2019). 3D printing: applications in evolution and ecology. Ecology and Evolution, 9(7), 4289–4301. https://doi.org/10.1002/ece3.5050
- Wang, X., Jiang, M., Zhou, Z., Gou, J., & Hui, D. (2017). 3D printing of polymer matrix composites: A review and prospective. Composites Part B: Engineering, 110, 442–458. https://doi.org/10.1016/j.compositesb.2016.11.034
- Wessel, B., Huber, M., Wohlfart, C., Marschalk, U., Kosmann, D., & Roth, A. (2018). Accuracy assess- ment of the global TanDEM-X Digital Elevation Model with GPS data. ISPRS Journal of Photo-grammetry and Remote Sensing, 139, 171–182. https://doi.org/10.1016/j.isprsjprs.2018.02.017
- Yamazaki, D., Ikeshima, D., Tawatari, R., Yamaguchi, T., O’Loughlin, F., Neal, J. C., Sampson, C. C., Kanae, S., & Bates, P. D. (2017). A high-accuracy map of global terrain elevations. Geophysical Research Letters, 44(11), 5844–5853. https://doi.org/10.1002/2017GL072874
- Yan, Q., Dong, H., Su, J., Han, J., Song, B., Wei, Q., & Shi, Y. (2018). A review of 3D printing technology for medical applications. Engineering, 4(5), 729–742. https://doi.org/10.1016/j.eng.2018.07.021
- Zhang, G., Gong, J., Li, Y., Sun, J., Xu, B., Zhang, D., Zhou, J., Guo, L., Shen, S., & Yin, B. (2020). An efficient flood dynamic visualization approach based on 3D printing and augmented reality. International Journal of Digital Earth, 13(11), 1302–1320. https://doi.org/10.1080/17538947.2019.1711210
- Zingaro, M., La Salandra, M., Colacicco, R., Roseto, R., Petio, P., & Capolongo, D. (2021). Suitability assessment of global, continental and national digital elevation models for geomorphological analyses in Italy. Transactions in GIS, 25(5), 2283–2308. https://doi.org/10.1111/tgis.12845
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8a247b0-6a52-4e62-84dd-99b255a89031
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.