PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Fast Designing Ladder Diagram of Programmable Logic Controller for a Technological Process

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The article presents developed method and general principles of creating ladder diagrams, which are commonly used for systems with programmable logic controllers (PLC). Ladder diagrams are created for sequential control systems of technological processes, which are described by a connection pattern, time diagrams of the executive elements` operation. The executive elements are double-acting pneumatic or hydraulic actuators controlled by bistable electrovalves. A method of designing sequential systems enabling the creation of a ladder electro-pneumatic system is presented. The ladder diagram consists of two parts. One is responsible for controlling the valve coils, the other for the implementation of the memory block. The signals that control the transition to the next state are the signals described on the boundaries of the graph division. The synthesis of control systems and their verification was carried out using the computer aided program FluidSim by Festo.
Rocznik
Strony
709--714
Opis fizyczny
Bibliogr. 31 poz., fot., rys., tab., wykr.
Twórcy
  • University of Technology in Kielce, Department of Mechatronics and Machine Building, Poland
  • University of Technology in Kielce, Department of Electrical Engineering, Automatic Control and Computer Science, Poland
Bibliografia
  • [1] El-Maleh, A. A Note on Moore Model for Sequential Circuits. ResearchGate.com. Published on July 2016. Available online: https://www.researchgate.net/publication/305268049_A_Note_on_Moore_Model_for_Sequential_Circuits (accessed on 10 September 2021).
  • [2] Tocci, R.; Widmer, N.; Moss, G. Digital Systems, 12th ed.; Pearson: London, UK, 23 March 2016; ISBN: 0134220137.
  • [3] Gorzałczany, M.B. Układy Cyfrowe - Metody Syntezy. Tom II: Układy Sekwencyjne, Układy Mikroprogramowane; Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Poland, 2003, p. 370.
  • [4] Horowitz, P.; Hill. W. The Art of Electronics. Cambridge University Press. New York, 2015.
  • [5] Myczuda, Z., Szcześniak, A. Analiza prądów upływu logarytmicznego przetwornika analogowo-cyfrowego z sukcesywną aproksymacją. Przegląd Elektrotechniczny, 2012, 5a, 247-250.
  • [6] Mychuda, Z., Mychuda, L., Antoniv, U., Szcześniak, A. Logarithmic ADC with Accumulation of Charge and Impulse Feedback - Construction, Principle of Operation and Dynamic Properties, Intl Journal Of Electronics And Telecommunications, 2021, Vol. 67, No. 4, pp. 699-704 https://doi.org/10.24425/ijet.2021.137865.
  • [7] Mychuda, Z., Mychuda, L., Antoniv, U., Szcześniak, A. Logarithmic ADC with Accumulation of Charge and Impulse Feedback – Analysis and Modeling , Intl Journal Of Electronics And Telecommunications, 2021, Vol. 67, No. 4, pp. 705-710 https://doi.org/10.24425/ijet.2021.137866.
  • [8] Szcześniak, A.; Szcześniak, Z. Algorithmic Method for the Design of Sequential Circuits with the Use of Logic Elements. Appl. Sci. 2021, 11, 11100. https://doi.org/10.3390/app112311100.
  • [9] Borden, T.; Cox, R.A. Technician's Guide to Programmable Controllers, 6th ed.; Cengage Learning: Boston, MA, USA, 2021; ISBN: 978-1111544096.
  • [10] Wikarek, J.; Sitek, P. A Data-Driven Approach to Constraint Optimization. In Advances in Intelligent Systems and Computing; Springer: Singapore, 2019; Volume 920; pp. 135-144.
  • [11] Sanver, U.; Yavuz, E.; Eyupoglu, C.; Uzun, T. Design and implementation of a programmable logic controller using PIC18F4580. In Proceedings of the 2018 IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering (EIConRus), Moscow, Russia, 29 January-1 February 2018; pp. 231-235.
  • [12] Vasu, P.; Chouhan, H.; Naik, N. Design and implementation of optimal soft-Programmable logic controller on multicore processor. In Proceedings of the 2017 International conference on Microelectronic Devices, Circuits and Systems (ICMDCS2017), Vellore, India, 10-12 August 2017; pp.410-414.
  • [13] Vinces, L.P.; Fernández, P.; Carpio, C.D.; Rocca, E. An Automatic Control System Using the S7-1200 Programmable Logic Controller for the Ethanol Rectification Process. In Proceedings of the 2018 IEEE XXV International Conference on Electronics, Electrical Engineering and Computing (INTERCON), Lima, Peru, 8-10 August 2018; pp. 96-100.
  • [14] Phan, V. D. ; Vo, C. P.; Dao, H. V.; Ahn, K. K. "Actuator Fault-Tolerant Control for an Electro-Hydraulic Actuator Using Time Delay Estimation and Feedback Linearization," in IEEE Access, vol. 9, pp. 107111-107123, 2021, https://doi.org/10.1109/ACCESS.2021.3101038.
  • [15] Products for Totally Integrated Automation, available online: https://cache.industry.siemens.com/dl/files/167/109744167/att_920955/v1/simatic-st70-complete-english-2017.pdf (accessed on 12 January 2022).
  • [16] Chhillar, K.; Dahiya, S. Design of Sequential Circuits with Timing Analysis and Considerations. Int. J. Eng. Sci. Comput. 2017, 7, 808-11809.
  • [17] Ociepka, P.; Herbuś, K. Verification of operation of the actuator control system using the integration the B&R Automation Studio software with a virtual model of the actuator system. IOP Conf. Series: Materials Science and Engineering 227 (2017) 012056; https://doi:10.1088/1757-899X/227/1/012056.
  • [18] Szcześniak, A.; Szcześniak, Z. Designing of Control Systems for Automation of Technological Processes; Kielce University of Technology: Kielce, Poland, 2015.
  • [19] Acuña-Bravo, W., Canuto, E., Agostani, M., Bonadei, M. Proportional electro-hydraulic valves: An Embedded Model Control solution. Elsevier, Control Engineering Practice Volume 62, May 2017, Pages 22-35, https://doi.org/10.1016/j.conengprac.2017.01.013.
  • [20] Wu, D.; Wang, X.; Ma, Y.; Wang, J.; Tang, M.; Liu, Y. Research on the Dynamic Characteristics of Water Hydraulic Servo Valves Considering the Influence of Steady Flow Force. Flow Meas. Instrum. 2021, 80, 101966.
  • [21] Szcześniak, A., Szcześniak, Z. Microprocessor processing signals of optoelectronic position transducer, Przegląd Elektrotechniczny, 2009, 4, 153-158.
  • [22] Vo, C.P.; Ahn, K.K. High-precision Position Control of Soft Actuator Systems. Conference: The 3rd International Workshop on Active Materials and Soft Mechatronics (AMSM2018)At: KAIST, Daejeon, South Korea.
  • [23] Zhang, Y.; Yue, H.; Li, K.; Cai, M. Analysis of Power Matching on Energy Savings of a Pneumatic Rotary Actuator Servo-Control System. Chin. J. Mech. Eng. 2020, Pages 13 https://doi.org/10.1186/s10033-020-00445-3.
  • [24] He, S.; Li, D.; Lyu, K.; Zhang, Y.; Yue, H.; Li, K.; Wei, F. Experimental Simulation and Verification of Position Servo Control of Mechanical Rodless Cylinder. Mechanical Engineering Science. 2020, Vol. 2, No. 2 https://doi.org/10.33142/mes.v2i2.3163.
  • [25] Li, I.-H.; Lee, L.-W. Design and development of an active suspension system using pneumatic-muscle actuator and intelligent control. Appl. Sci. 2019, 9, 4453, https://doi.org/10.3390/app9204453.
  • [26] Jing, X.; Yong, X.; Jiang, Y.; Li, G.; Yokoi, H. Anthropomorphic prosthetic hand with combination of light weight and diversiform motions. Appl. Sci. 2019, 9, 4203, https://doi.org/10.3390/app9204203.
  • [27] Dávila-Vilchis, J.-M.; LAZ-Avilés; Avilés Vilchis, J.C.; Vilchis-González, A.H. Design methodology for soft wearable devices - The MOSAR case. Appl. Sci. 2019, 9, 4727, https://doi.org/10.3390/app9224727.
  • [28] Różowicz, S.; Zawadzki, A.; Włodarczyk, M.; Różowicz, A.; Mazur, D. Assessment of the Impact of Per Unit Parameters Errors on Wave and Output Parameters in a Transmission Line. Energies 2021, 14, 7440. https://doi.org/10.3390/en14217440.
  • [29] Szcześniak, A. Analiza przetwarzania sygnałów logarytmicznego przetwornika analogowo - cyfrowego z sukcesywną aproksymacją. Kielce University of Technology: Kielce, Poland, 2019. ISBN: 978-83-65719-48-5.
  • [30] Szcześniak, A.; Szcześniak, Z.; Mychuda, Z.; Zhuravel,I.; Mychuda, L.; Yelisieieva, H. Mathematical Modelling of the Influence of Parasitic Capacitances of the Components of the Logarithmic Analogue-to-Digital Converter (LADC) with a Successive Approximation on Switched Capacitors for Increasing Accuracy of Conversion. Electronics 2022, 11, 1485, https://doi:10.3390/electronics11091485.
  • [31] Szcześniak, A.; Szcześniak, Z.; Mychuda, Z.; Zhuravel,I.; Mychuda, L. Modelling a New Multifunctional High Accuracy Analogue-to-Digital Converter with an Increased Number of Inputs. Electronics 2022, 11, 1677; https://doi:10.3390/electronics11111677.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b89defa6-131a-45d9-b584-b2c361b33403
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.