PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

On the prediction of the effect of bi-ventricular assistance after cardiac explantation on the vascular flow physiology: A numerical study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Heart failure is a chronic and progressive condition characterized by the heart’s inability to pump sufficient blood to meet the body’s metabolic demands. It is a significant public health concern worldwide, associated with high morbidity, mortality, and healthcare costs. For advanced heart failure cases not responding to medical therapy, heart transplantation or mechanical circulatory support with ventricular assist devices (VADs) can be considered. In the specific case of bi-ventricular heart failure a replacement of both ventricles is required. In this context a Total Artificial Heart (TAH) may be proposed as a bridge to transplant solution. Additionally, bi-ventricular assist devices (BiVADs) are available to support both ventricles simultaneously. However Bi-ventricular heart failure management is difficult with poor outcomes. New surgical procedures appear to propose solutions after both ventricle failure. One of these intervention uses two continuous-flow VADs as a total artificial heart after cardiac explantation due to myocardial sarcoma. Unfortunately, this procedure makes patient management very difficult as pulmonary pressures and flow rate are no longer measurable after the surgical procedure. The setting of both pumps is hence a complex task for patient management. This article aims at helping clinicians on patient management undergoing double assistance after cardiac explantation by predicting the different outcomes on the vascular grid for all the possible rotational speed combination using a lumped model. Results provide a range of both pump operating conditions suitable for delivering a physiologically adapted flow to the vascular grid when combined with hypotensive treatments.
Twórcy
autor
  • Arts et Métiers Sciences et Technologies, CNAM, LIFSE, HESAM University, 75013 Paris, France
  • Arts et Métiers Sciences et Technologies, CNAM, LIFSE, HESAM University, 75013 Paris, France
  • Arts et Métiers Sciences et Technologies, CNAM, LIFSE, HESAM University, 75013 Paris, France
  • Institute of Cardiology, Pitié-Salpêtrière Hospital, CHU Pitié-Saplêtrière AP-HP, Sorbonne University, 75013 Paris, France
  • Institute of Cardiology, Pitié-Salpêtrière Hospital, CHU Pitié-Saplêtrière AP-HP, Sorbonne University, 75013 Paris, France
Bibliografia
  • [1] Roger Véronique L. Epidemiology of heart failure. Circ Res 2021;128(10):1421-34.
  • [2] Ziaeian B, Fonarow G. Epidemiology and aetiology of heart failure. Nat Rev Cardiol 2016;13:368-78.
  • [3] Zannad Faiez. Rising incidence of heart failure demands action. Lancet 2018;391(10120):518-9.
  • [4] Définition et causes de l’insuffisance cardiaque. 2023, https://www.ameli.fr/paris/assure/sante/themes/insuffisance-cardiaque/definition-causes. [Accessed 14 June 2023].
  • [5] Carrier Michel, Perrault Louis P. Surgical treatments for patients with terminal heart failure: Mechanical support compared with transplantation. Can J Cardiol 2014;30(12, Supplement):S455-8, Looking to the Future of Heart Disease Prevention and Management: A Supplement Marking the 60th Anniversary of the Founding of the Montreal Heart Institute.
  • [6] Colvin M, Smith JM, Hadley N, Skeans MA, Carrico R, Uccellini K, et al. OPTN/SRTR 2016 annual data report: Heart. Am J Transplant 2018;18(S1):291-362.
  • [7] Lebreton Guillaume, Mastroianni C, Amour J, Leprince Pascal. Implantation of two HVADs used as a total artificial heart: A new approach. Ann Thorac Surg 2019;107:165-78.
  • [8] Lescroart M, Hébert JL, Vincent F, L.S. Nguyen. Pulsatility in ventricular assistance devices: A translational review focused on applied haemodynamics. Arch Cardiovasc Dis Jul 2020;113:461-72.
  • [9] Morshuis Michiel, Schulz Uwe, Rehn E, Gummert Jan. Besonderheiten beim einsatz von kunstherzen. Z Herz-Thorax- GefäßChir 2015;29:38-46.
  • [10] Guyton AC. Determination of cardiac output by equating venous return curves with cardiac response curve. Physiol Rev 1955;35:123-9.
  • [11] Son Jeongeun, Du Dongping, Du Yuncheng. Modelling and control of a failing heart managed by a left ventricular assist device. Biocybern Biomed Eng 2020;40:559-73.
  • [12] Ferreira A. AA Rule-Based Controller Based on Suction Detection for Rotary Blood Pumps [Ph.D. dissertation], Dept.Elect. Comput. Eng. University of Pittsburgh; 2007.
  • [13] Avanzolini G, Barbini P, Cappello A, Cevenini G. CADCS simulation of the closed-loop cardiovascular system. Int J Biomed Comput 1998;22(1):39-49.
  • [14] McLeod J. PHYSBE ... a physiological simulation benchmark experiment. Simulation 1966;7(6):324-9.
  • [15] Simaan MA, Ferreira A, Chen S, Antaki JF, Galati DG. A dynamical state space representation and performance analysis of a feedback-controlled rotary left ventricular assist device. IEEE Trans Control Syst Technol Feb 2009;17(1):15-28.
  • [16] Marcel Louis, Specklin Mathieu, Kouidri Smaine. The evolution of long-term pediatric ventricular assistance devices: a critical review. Expert Rev Med Devices 2021;18(8):783-98.
  • [17] Yi Wu. Design and Testing of a Physiologic Control System for an Artificial Heart Pump [Ph.D. dissertation], Mech.Aerosp. Eng. University of Virginia; 2004.
  • [18] Choi S, Antaki JE, Boston R, Thomas D. A sensorless approach to control of a turbodynamic left ventricular assist system. IEEE Trans Control Syst Technol 2001;9(3):473-82.
  • [19] Fernandez de Canete J, Del Saz-Orozco P, Moreno-Boza D, Duran-Venegas E. Object-oriented modeling and simulation of the closed loop cardiovascular system by using SIMSCAPE. Comput Biol Med 2001;43(4):323-33.
  • [20] Giridharan GA, Skliar M, Olsen DB, Pantalos GM. Modeling and control of a brushless DC axial flow ventricular assist device. ASAIO J May 2002;48(3):272-89.
  • [21] Gil Antonio, Navarro Roberto, Quintero Pedro, Mares Andrea, Pérez Manuel, Montero Jose. CFD analysis of the HVAD’s hemodynamic performance and blood damage with insight into gap clearance.. Biomech Model Mechanobiol 2022;21.
  • [22] ESPCI. Fluides non-Newtoniens. ESPCI Mecaflu Annexe A.
  • [23] Konishi Hiroaki, et al. Dynamic systemic vascular resistance in a sheep supported with a nimbus AxiPump. ASAIO J 1994;40(3).
  • [24] Paquin Alexandre Lemire, Chaib-draa Brahim, Giguère Philippe. Stability analysis of stochastic gradient descent for homogeneous neural networks and linear classifiers. Neural Netw 2023.
  • [25] Peseux Paul. Differentiating relational queries. 2021, PhD@VLDB.
  • [26] World Health Organization. Hypertension. Mar 2023, https://www.who.int/ news-room/fact-sheets/detail/hypertension.
  • [27] Yang Jenny, Madani Michael M, Mahmud Ehtisham, Kim Nick H. Evaluation and management of chronic thromboembolic pulmonary hypertension. Chest 2023.
  • [28] S. Silbernagl, A. Despopoulos. In: Flammarion Médecines-Sciences, editor. Atlas de poche de physiologie. 2001, p. 187-219.
  • [29] Eisen Howard J, Flack John M, Atluri Pavan, Bansal Neha, Breathett Khadijah, Brown Angela L, et al. Management of hypertension in patients with ventricular assist devices: A scientific statement from the American heart association. Circ Heart Fail 2022;15(5):e000074.
  • [30] Simonsen Ulf, Christensen Frank Holden, Buus Niels Henrik. The effect of tempol on endothelium-dependent vasodilatation and blood pressure. Pharmacol Ther 2009;122:109-24.
  • [31] Lee Ping-Ying, Chen Wency, Liu I-Min, Cheng Juei-Tang. P1-29 vasodilatation induced by sinomenine to lower the blood pressure in spontaneously hypertensive rats. Int J Cardiol 2007;122:69.
  • [32] Daneshmand Mani, Bishawi Muath, Milano Carmelo, Schroder Jacob. The heartmate 6. ASAIO J 2019;66:1.
  • [33] Satish Mohan, Anyanwu Anelechi, Moss Noah, Lala Anuradha, Itagaki Shinobu, Mancini Donna. HeartMate-3 ventricular assist devices versus the total artificial heart for biventricular support: A single-center series. ASAIO J 2023;69:544-51.
  • [34] Hanke Jasmin S, Dogan Günes, Haverich Axel, Schmitto Jan D. Implantation of two HeartMate 3s in the setting of a total artificial heart. Oper Tech Thorac Cardiovasc Surg 2021;26(1):67-80.
  • [35] Dogan Günes, Hanke Jasmin, Alhumood Khaldoon, Tarazi Riyad, Riebandt Julia, Wiedemann Dominik, Kneževič Ivan, Haverich Axel, Zimpfer Daniel, Schmitto Jan. Three-month outcomes after the implantation of two HeartMate 3 devices in total artificial heart configuration. J Cardiovasc Surg 2023;64:121-9.
  • [36] Abbasnezhad Navideh, Specklin Mathieu, Bakir Farid, Leprince Pascal, Danial Pichoy. Hemodynamic evaluation of a centrifugal left atrial decompression pump for heart failure with preserved ejection fraction. Bioengineering 2023;10:366.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b896744c-2d0b-46ea-8e45-8bc9da0a6134
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.