PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

2D Cadastral Coordinate Transformation using extreme learning machine technique

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Land surveyors, photogrammetrists, remote sensing engineers and professionals in the Earth sciences are often faced with the task of transferring coordinates from one geodetic datum into another to serve their desired purpose. The essence is to create compatibility between data related to different geodetic reference frames for geospatial applications. Strictly speaking, conventional techniques of conformal, affine and projective transformation models are mostly used to accomplish such task. With developing countries like Ghana where there is no immediate plans to establish geocentric datum and still rely on the astro-geodetic datums as it national mapping reference surface, there is the urgent need to explore the suitability of other transformation methods. In this study, an effort has been made to explore the proficiency of the Extreme Learning Machine (ELM) as a novel alternative coordinate transformation method. The proposed ELM approach was applied to data found in the Ghana geodetic reference network. The ELM transformation result has been analysed and compared with benchmark methods of backpropagation neural network (BPNN), radial basis function neural network (RBFNN), two-dimensional (2D) affine and 2D conformal. The overall study results indicate that the ELM can produce comparable transformation results to the widely used BPNN and RBFNN, but better than the 2D affine and 2D conformal. The results produced by ELM has demonstrated it as a promising tool for coordinate transformation in Ghana.
Rocznik
Strony
321--343
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
autor
  • University of Mines and Technology Faculty of Mineral Resources Technology, Department of Geomatic Engineering Tarkwa-Esiama Rd, Tarkwa, Ghana
autor
  • University of Mines and Technology Faculty of Mineral Resources Technology, Department of Geomatic Engineering Tarkwa-Esiama Rd, Tarkwa, Ghana
autor
  • University for Development Studies Department of Environment and Resource Studies, Central Administration Doungou Kumasi Rd, Wa, Ghana
autor
  • East China University of Technology, Faculty of Geomatics Nanchang 330013, P. R. China
Bibliografia
  • [1] Afzali, M., Afzali, A. and Zahedi, G. (2012). The Potential of Artificial Neural Network Technique In Daily and Monthly Ambient Air Temperature Prediction. International Journal of Environmental Science and Development, 3 (1), 33–38. DOI: 10.7763/IJESD.2012.V3.183.
  • [2] Aharkava, L. (2010). Artificial neural networks and self-organization for knowledge extraction. Masters Thesis. Charles University, Faculty of Mathematics and Physics, Prague.
  • [3] Al-Ruzouq, R. and Dimitrova, P. (2006). Photogrammetric Techniques for Cadastral Map Renewal. TS 90 – GIS and Land Administration Photogrammetric Techniques for Cadastral Map Renewal Shaping the Change XXIII FIG Congress Munich, Germany, October 8–13, 2006.
  • [4] Ayer, J. (2008). Transformation Models and Procedures for Framework Integration of the Ghana National Geodetic Network. The Ghana Surveyor, 1 (2), 52–58.
  • [5] Ayer, J. and Fosu, C. (2008). Map Coordinate Referencing and the Use of GPS Datasets in Ghana. Journal of Science and Technology, 28 (1), 116–127.
  • [6] Barsi, P. (2001). Performing coordinate transformation by artificial neural network. Allgemeine Vermessungs-Nachrichten, 4, 134–137.
  • [7] Bishop, C.M. (1995). Neural networks for pattern recognition. Oxford, UK: Oxford University Press.
  • [8] Broomhead, D.S. and Lowe, D. (1988). Multivariate functional interpolation and adaptive networks. Complex Systems, 2, 321–355.
  • [9] Chang, N.B., Han, M., Yao,W., Chen, L.C. and Xu, S. (2010). Change detection of land use and land cover in an urban region with SPOT-5 images and partial Lanczos extreme learning machine. Journal of Applied Remote Sensing, 4 (1), 11–15. DOI: 10.1117/1.3518096.
  • [10] Chen, S., Cowan, C.F.N. and Grant, P.M. (1991). Orthogonal Least Squares Learning Algorithm for Radial Basis Functions Networks. IEEE Transaction on Neural Networks, 2 (2), 302–309. DOI: 10.1109/72.80341.
  • [11] Deakin, R.E. (2007). Coordinate transformations for cadastral surveying. School of Mathematical and Geospatial Sciences, RMIT University, 1–34.
  • [12] Deo, R.C. and ¸ Sahin, M. (2016). An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland. Environmental Monitoring and Assessment, 188 (2), 1–24. DOI: 10.1007/s10661-016-5094-9.
  • [13] Deo, R.C., Tiwari, M.K., Adamowski, J.F. and Quilty, J.M. (2017). Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stochastic Environmental Research and Risk Assessment, 31 (5), 1211–1240. DOI: 10.1007/s00477-016-1265-z.
  • [14] Dönmez, ¸S.Ö. and Tunc, A. (2016). Transformation methods for using combination of remotely sensed data and cadastral maps. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B4, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic, 587–589. DOI: 10.5194/isprsarchives-XLI-B4-587-2016.
  • [15] Dzidefo, A. (2011). Determination of transformation parameters between the World Geodetic System 1984 and the Ghana geodetic network. Masters Thesis, Department of Civil and Geomatic Engineering, KNUST, Kumasi, Ghana.
  • [16] ElSayed, M.S. and Ali, A.H. (2016). Performance Evaluation of Applying Fuzzy Multiple Regression Model to TLS in the Geodetic Coordinate Transformation. American Scientific Research Journal for Engineering, Technology, and Sciences, 25 (1), 36–50.
  • [17] Fosu, C., Poku-Gyamfi, Y. and Hein,W.G. (2006). Global Navigation Satellite System (GNSS) – A Utility for Sustainable Development in Africa. 5th FIG Regional Conference on Promoting Land Administration and Good Governance, Workshop – AFREF I, Accra, Ghana, 1–12.
  • [18] Fotiou, A. and Kaltsikis, C.J. (2016). Computationally efficient methods and solutions with least squares similarity transformation models. https://www.researchgate.net/profile/Aristeidis_Fotiou/publication/309732142_Computationally_efficient_methods_and_solutions_with_least_squares_similarity_transformation_models/links/58204df808ae12715afbb0c6/Computationally-efficient-methods-and-solutions-with-least-squares-similarity-transformation-models.pdf. Accessed 2 January 2018.
  • [19] Ghilani, C.D. (2010). Adjustment Computations: Spatial Data Analysis, 5th edition, John Wiley & Sons Inc., Hoboken, New Jersey.
  • [20] Gil, J. and Mrówczyńska, M. (2010). Methods of Artificial Intelligence used for Transforming a System of Coordinates. Geodetski list, 66 (4), 321–336.
  • [21] Gullu, M. (2010). Coordinate Transformation by Radial Basis Function Neural Network. Scientific Research and Essays, 5, 3141–3146.
  • [22] Gullu, M., Yilmaz, M., Yilmaz, I. and Turgut, B. (2011). Datum transformation by artificial neural networks for geographic information systems applications. International Symposium on Environmental Protection and Planning: Geographic Information Systems (GIS) and Remote Sensing (RS) Applications (ISEPP) Izmir – Turkey, 13–19.
  • [23] Hao, Y. and Wilamowski, B.M. (2011). Levenberg–marquardt training. Industrial Electronic Handbook, vol. 5 Intelligent Systems, 2nd Edition, Chapter 12, 1–15, CRC Press.
  • [24] Hornik, K., Stinchcombe, M. and White, H. (1989). Multilayer feed forward networks are universal approximators. Neural Networks, 2, 359–366.
  • [25] Huang, F., Huang, J., Jiang, S. and Zhou, C. (2017). Landslide displacement prediction based on multivariate chaotic model and extreme learning machine. Engineering Geology, 218, 173–186. DOI: 10.1016/j.enggeo.2017.01.016.
  • [26] Huang, G., Huang, G.B., Song, S. and You, K. (2015). Trends in extreme learning machines: A review. Neural Networks, 61, 32–48. DOI: 10.1016/j.neunet.2014.10.001.
  • [27] Huang, G.B. and Babri, H.A. (1998). Upper bounds on the number of hidden neurons in feedforward networks with arbitrary bounded nonlinear activation functions. IEEE Transaction on Neural Networks, 9 (1), 224–229. DOI: 10.1109/72.655045.
  • [28] Huang, G.B., Chen, L.and Siew, C.K. (2006b). Universal approximation using incremental constructive feedforward networks with random hidden nodes. IEEE Transaction on Neural Networks, 17 (4), 879–892. DOI: 10.1109/TNN.2006.875977.
  • [29] Huang, G.B., Zhu, Q.Y. and Siew, C.K. (2006a). Extreme learning machine: Theory and applications. Neurocomputing, 70, 489–501. DOI: 10.1016/j.neucom.2005.12.126.
  • [30] Konakoglu, B., Cakir L. and Gökalp, E. (2016). 2D coordinates transformation using artificial neural networks. Geo Advances 2016: ISPRS Workshop on Multi-dimensional & Multi-scale Spatial Data Modeling, At Mimar Sinan Fine Arts University/Istanbul, Volume XLII-2/W1: 3rd International GeoAdvances Workshop. DOI: 10.5194/isprs-archives-XLII-2-W1-183-2016.
  • [31] Konakoglu B. and Gökalp, E. (2016). A Study on 2D similarity transformation using multilayer perceptron neural networks and a performance comparison with conventional and robust outlier detection methods. Acta Montanistica Slovaca, 21 (4), 324–332.
  • [32] Kotzev, V. (2013). Consultancy service for the selection of a new projection system for Ghana. Draft Final Reports, World Bank Second Land Administration Project (LAP-2), Ghana.
  • [33] Kumi-Boateng, B. and Ziggah, Y.Y. (2017). Horizontal coordinate transformation using artificial neural network technology – A case study of Ghana geodetic reference network. Journal of Geomatics, 11 (1), 1–11.
  • [34] Lao-Sheng, L. and Yi-Jin,W. (2006). A study on cadastral coordinate transformation using artificial neural network. Proceedings of the 27th Asian Conference on Remote Sensing, Ulaanbaatar, Mongolia.
  • [35] Lazarevska, E. (2016).Wind speed prediction with extreme learning machine. 2016 IEEE 8th International Conference on Intelligent Systems (IS), Sofia, 154–159. DOI: 10.1109/IS.2016.7737415.
  • [36] Lei, Y., Zhao, D. and Cai, H. (2015). Prediction of length-of-day using extreme learning machine. Geodety and Geodynamics, 6 (2), 151–159. DOI: 10.1016/j.geog.2014.12.007.
  • [37] Lian, C., Zeng, Z., Yao, W. and Tang, H. (2014). Extreme learning machine for the displacement prediction of landslide under rainfall and reservoir level. Stochastic environmental research and risk assessment, 28(8), 1957–1972. DOI: 10.1007/s00477-014-0875-6.
  • [38] Marwala, T. (2013). Economic Modeling Using Artificial Intelligence Methods. Springer-Verlag London.
  • [39] Mihalache, R.M. (2012). Coordinate transformation for integrating map information in the new geocentric European system using artificial neural networks. GeoCAD, 1–9.
  • [40] Mohammadi, K., Shamshirband, S., Motamedi, S., Petkovi´c, D., Hashim, R. and Gocic, M. (2015). Extreme learning machine based prediction of daily dew point temperature. Computers and Electronics in Agriculture, 117, 214–225. DOI: 10.1016/j.compag.2015.08.008.
  • [41] Moore, E.H. (1920). On the reciprocal of the general algebraic matrix. Bulletin of the American Math Society, 26, 394–395.
  • [42] Mugnier, J.C. (2000). OGP-coordinate conversions and transformations including formulae, COLUMN, Grids and Datums. The Republic of Ghana. Photogrammetric Engineering and Remote Sensing, 695–697.
  • [43] Muller, V.A. and Hemond, F.H. (2013). Extended artificial neural networks: incorporation of a priori chemical knowledge enables use of ion selective electrodes for in-situ measurement of ions at environmentally relevant levels. Talanta, 117, 112–118. DOI: 10.1016/j.talanta.2013.08.045.
  • [44] Orr, M.J.L. (2009). Introduction to Radial Basis Function Networks. Center for Cognitive Science, Edinburgh University, Scotland, UK.
  • [45] Pal, M. (2009). Extreme-learning-machine-based land cover classification. International Journal of Remote Sensing, 30 (14), 3835–3841. DOI: 10.1080/01431160902788636.
  • [46] Penrose, R. (1955) A generalized inverse for matrices. In Mathematical proceedings of the Cambridge Philosophical Society, 51 (3), 406–413. DOI: 10.1017/S0305004100030401.
  • [47] Poku-Gyamfi, Y. (2009). Establishment of GPS Reference Network in Ghana. PhD Dissertation, Universitat der Bundeswehr Munchen, Germany.
  • [48] Rumelhart, D.E., McClelland, J.L. and PDP Research Group. (1986). Parallel Distributed Processing: Explorations in the Microstructure of Cognition. MIT Press, Cambridge, Massachusetts, USA.
  • [49] Sisman, Y. (2014). Coordinate transformation of cadastral maps using different adjustment methods. Journal of Chinese Institute of Engineers, 37 (7), 869–882. DOI: 10.1080/02533839.2014.888800.
  • [50] Swadi, G. (2010). A study of prediction in seabed mapping. PhD Dissertation. University of Wales Institute, Cardiff, Wales.
  • [51] Tierra, A. and Romero, R. (2014). Planes Coordinates Transformation between PSAD56 to SIRGAS using a Multilayer Artificial Neural Network. Geodesy and Cartography, 63, 199–209. DOI: 10.2478/geocart-2014-0014.
  • [52] Tierra, A., Dalazoana, R. and De Freitas, S. (2008). Using an Artificial Neural Network to Improve the Transformation of Coordinates between Classical Geodetic Reference Frames. Computers & Geosciences, 34, 81–189. DOI: 10.1016/j.cageo.2007.03.011.
  • [53] Tierra, A.R., De Freitas, S.R.C. and Guevara, P.M. (2009). Using an Artificial Neural Network to Transformation of Coordinates from PSAD56 to SIRGAS95. Geodetic Reference Frames, International Association of Geodesy Symposia, 134, 173–178. DOI: 10.1007/978-3-642-00860-3_27.
  • [54] Tiwari, M., Adamowski, J. and Adamowski, K. (2016). Water demand forecasting using extreme learning machines. Journal of Water and Land Development, 28 (1), 37–52. DOI: 10.1515/jwld-2016-0004.
  • [55] Turgut, B. (2010). A Back-Propagation Artificial Neural Network Approach for Three-Dimensional Coordinate Transformation. Science and Research Essay, 5, 3330–3335.
  • [56] Wu, C.H., Chou, H.J. and Su, W.H. (2008). Direct transformation of coordinates for GPS positioning using the techniques of genetic programming and symbolic regression. Engineering Applications of Artificial Intelligence, 21 (8), 1347–1359. DOI: 10.1016/j.engappai.2008.02.001.
  • [57] Yakubu, I. and Kumi-Boateng, B. (2015). Ramification of datum and ellipsoidal parameters on post processed differential global positioning system (DGPS) data – A case study. Ghana Mining Journal, 15, 1–9.
  • [58] Yih-Jiuan, W. (1998). Exchange rate forecasting: an application of radial basis function neural networks. Iowa State University, USA.
  • [59] Yilmaz, I. and Gullu, M. (2012). Georeferencing of Historical Maps using back propagation artificial neural network. Experimental Techniques, 3 (5), 15–19. DOI: 10.1111/j.1747-1567.2010.00694.x.
  • [60] Yonaba, H., Anctil, F. and Fortin, V. (2010). Comparing sigmoid transfer functions for neural network multistep ahead stream flow forecasting. Journal of Hydrologic Engineering, 15(4), 275–283. DOI: 10.1061/(ASCE)HE.1943-5584.0000188.
  • [61] Zaletnyik, P. (2004). Coordinate Transformation with Neural Networks and with Polynomials in Hungary. International Symposium on Modern Technologies, Education and Professional Practice in Geodesy and Related Fields, Sofia, Bulgaria, 471–479.
  • [62] Zhang, S., Zhang, K. and Liu, P. (2016). Total Least-Squares Estimation for 2D Affine Coordinate Transformation with Constraints on Physical Parameters. Journal of Surveying Engineering, 142 (3), 04016009-1-04016009-5. DOI: 10.1061/(ASCE)SU.1943-5428.0000180.
  • [63] Zhang, Y., Ding, S., Xu, X., Zhao, H. and Xing, W. (2013). An Algorithm Research for Prediction of Extreme Learning Machines Based on Rough Sets. Journal of Computers, 8 (5), 1335–1342. DOI: 10.4304/jcp.8.5.1335-1342.
  • [64] Ziggah, Y.Y., Youjian, H., Tierra, A., Konaté, A.A. and Hui, Z. (2016). Performance evaluation of artificial neural networks for planimetric coordinate transformation - a case study, Ghana. Arabian Journal of Geosciences, 9 (17), 1–16. DOI: 10.1007/s12517-016-2729-7.
  • [65] Zounemat-Kermani, M. (2012). Hydrometeorological parameters in prediction of soil temperature by means of artificial neural network: Case study in Wyoming. Journal of Hydrologic Engineering, 18 (6), 707–718. DOI: 10.1061/(ASCE)HE.1943-5584.0000666.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b890be37-28c2-47d9-b7cc-19a9c074d045
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.