Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Tropical river basins exhibit complex hydrological dynamics and are increasingly susceptible to the impacts of climate change. However, there remains a lack of data and methodological frameworks to comprehensively assess runoff responses in these regions. This study proposes a framework for evaluating the impact of climate change on runoff in the Ba River basin. Long-term trends in temperature, rainfall, and discharge from 1981 to 2020 were analyzed. The SWAT model was applied to simulate future discharge under four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5) for the periods 2021-2040, 2041-2060, 2061-2080, and 2081-2100. Results indicate that annual discharge at the An Khe station (upper basin) is projected to decline by 30.2 to 39.0%, while the Cung Son station (lower basin) is expected to experience change ranging from –4.0% to +15.6%. During the flood season, discharge is projected to decrease at the An Khe station (–6.1 to –17.3%) but increase substantially at the Cung Son station (+32.0 to +57.9%). In contrast, low-flow season discharge is projected to decline sharply at both stations by 68.0 to 85.2% at the An Khe station and 86.7 to 98.6% at the Cung Son station. The anticipated reduction in lowflow-season discharge highlights critical risks for water security in tropical basins. These findings underscore the urgent need for improved management strategies and operational frameworks to ensure sustainable water use under future climate conditions.
Słowa kluczowe
Rocznik
Tom
Strony
104--127
Opis fizyczny
Bibliogr. 44 poz., rys., tab.
Twórcy
autor
- Institute of Earth Sciences, Vietnam
Bibliografia
- Abbaspour K., 2015, SWAT‐CUP: SWAT Calibration and Uncertainty Programs - A User Manual, Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dubendorf, Switzerland. Integrated Assessment, and Modeling (SIAM): Duebendorf, Switzerland.
- Aryal S.K., Silberstein R.P., Fu G., Hodgson G., Charles S.P., McFarlane D., 2020, Understanding spatio‐temporal rainfall‐runoff changes in a semi‐arid region, Hydrological Processes, 34 (11), 2510-2530, DOI: 10.1002/hyp.13744.
- Bekele D., Alamirew T., Kebede A., Zeleke G., Melesse A.M., 2019, Modeling climate change impact on the hydrology of Keleta watershed in the Awash River basin, Ethiopia, Environmental Modeling and Assessment, 24 (1), 95-107, DOI: 10.1007/s10666-018-9619-1.
- Bickici Arikan B., Kahya E., 2019, Homogeneity revisited: analysis of updated precipitation series in Turkey, Theoretical and Applied Climatology, 135 (1), 211-220, DOI: 10.1007/s00704-018-2368-x.
- CCI, 2017, Land Cober CCO. Product User Guide, Version 2.0, UCL-Geomatics: London, UK.
- Dang V.H., Tran D.D., Cham D.D., Hang P.T.T., Nguyen H.T., Truong H.V., Tran P.H., Duong M.B., Nguyen N.T., Le K.V. , Pham T.B.T., Nguyen A.H., 2020, Assessment of rainfall distributions and characteristics in coastal provinces of the Vietnamese Mekong Delta under climate change and ENSO processes, Water, 12 (6), DOI: 10.3390/w12061555.
- de Wit M.J.M., van den Hurk B., Warmerdam P.M.M., Torfs P.J.J.F., Roulin E., van Deursen W.P.A., 2007, Impact of climate change on low-flows in the river Meuse, Climatic Change, 82 (3), 351-372, DOI: 10.1007/s10584-006-9195-2.
- Duong P.C., 2016, Assessment of climate change impact on river flow regimes to support decision-making in water resources management in the Red River Delta, Vietnam - A case study of Nhue-Day River Basin. Salween and Red Rivers: Sharing Knowledge, 1001.
- Duong P.C., Nauditt A., Phong N.T., 2016, Assessment of climate change impact on river flow regimes in the Red River Delta, Vietnam - a case study of the Nhue-Day River Basin, Journal of Natural Resources and Development, 6, 81-91, DOI: 10.5027/JNRD.V6I0.09.
- Dutta P., Sarma A.K., 2021, Hydrological modeling as a tool for water resources management of the data-scarce Brahmaputra basin, Journal of Water and Climate Change, 12 (1), 152-165, DOI: 10.2166/wcc.2020.186.
- Elzeiny R., Khadr M., Zahran S., Rashwan E., 2019, Homogeneity analysis of rainfall series in the upper Blue Nile River basin, Ethiopia. Journal of Engineering Research, 3 (3), 46-53.
- Esit M., Yuce M.I., 2022, Comprehensive evaluation of trend analysis of extreme drought events in the Ceyhan River Basin, Turkey, Meteorology Hydrology and Water Management, 11 (1), 22-43, DOI: 10.26491/mhwm/154573.
- Eyring V., Bony S., Meehl G.A., Senior C.A., Stevens B., Stouffer R.J., Taylor K.E., 2016, Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geoscientific Model Development, 9 (5), 1937-1958, DOI: 10.5194/gmd-9-1937-2016.
- FAO, 2003, Digital soil map of the world and derived soil properties, available online at https://www.fao.org/soils-portal/datahub/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (data access 01.09.2025).
- WEF, 2020, The Global Risks Report 2020, World Economic Forum, available online at https://www.weforum.org/publications/the-global-risks-report-2020/ (data access 01.09.2025).
- Guo Y., Li Z., Amo-Boateng M., Deng P., Huang P., 2014, Quantitative assessment of the impact of climate variability and human activities on runoff changes for the upper reaches of Weihe River, Stochastic Environmental Research and Risk Assessment, 28 (2), 333-346, DOI: 10.1007/s00477-013-0752-8.
- Gupta H.V., Sorooshian S., Yapo P.O., 1999, Status of automatic calibration for hydrologic models: Comparison with multilevel expert calibration, Journal of Hydrologic Engineering, 4 (2), 135-143, DOI: 10.1061/(ASCE)1084-0699(1999)4:2(135).
- Gurung P., Dhungana S., Kyaw Kyaw A., Bharati L., 2022, Hydrologic characterization of the Upper Ayeyarwaddy River Basin and the impact of climate change, Journal of Water and Climate Change, 13 (7), 2577-2596, DOI: 10.2166/wcc.2022.407.
- Ha L.T., Bastiaanssen W.G., 2023, Determination of spatially-distributed Hydrological Ecosystem Services (HESS) in the Red River Delta using a calibrated SWAT model, Sustainability, 15 (7), DOI: 10.3390/su15076247.
- Helsel D.R., Mueller D.K., Slack J.R., 2006, Computer program for the Kendall family of trend tests, Scientific Investigations Report 2005-5275, DOI: 10.3133/sir20055275.
- Hrour Y., Fovet O., Lacombe G., Rousseau-Gueutin P., Sebari K., Pichelin P., Thomas Z., 2023, A framework to assess future water-resource under climate change in northern Morocco using hydro-climatic modelling and water-withdrawal scenarios, Journal of Hydrology: Regional Studies, 48, DOI: 10.1016/j.ejrh.2023.101465.
- Kendall M.G., 1970, Rank Correlation Methods, Griffin, 202 pp.
- Khoi D.N., Nguyen V.T., Sam T.T., Mai N.T.H., Vuong N.D., Cuong H.V., 2021, Assessment of climate change impact on water availability in the upper Dong Nai River Basin, Vietnam, Journal of Water and Climate Change, 12 (8), 3851-3864, DOI: 10.2166/wcc.2021.255.
- Khoi D.N., Thang L.V., 2017, Climate change impacts on streamflow and non‐point source pollutant loads in the 3S Rivers of the Mekong Basin, Water and Environment Journal, 31 (3), 401-409, DOI: 10.1111/wej.12256.
- Kohnová S., Rončák P., Hlavčová K., Szolgay J., Rutkowska A., 2019, Future impacts of land use and climate change on extreme runoff values in selected catchments of Slovakia, Meteorology Hydrology and Water Management. Research and Operational Applications, 7 (1), 47-55, DOI: 10.26491/mhwm/97254.
- Le X.-H., Kim Y., Van Binh D., Jung S., Nguyen D.H., Lee G., 2024, Improving rainfall-runoff modeling in the Mekong River basin using bias-corrected satellite precipitation products by convolutional neural networks, Journal of Hydrology, 630, DOI: 10.1016/j.jhydrol.2024.130762.
- Lionello P., Scarascia L., 2018, The relation between climate change in the Mediterranean region and global warming, Regional Environmental Change, 18 (5), 1481-1493, DOI: 10.1007/s10113-018-1290-1.
- Lobodzinskyi O., Vasylenko Y., Koshkina O., Nabyvanets Y., 2023, Assessing the impact of climate change on discharge in the Horyn River basin by analyzing precipitation and temperature data, Meteorology Hydrology and Water Management, 11 (1), 93-106, DOI: 10.26491/mhwm/163286.
- MONRE, 2021, Climate Change, Sea Level Rise. Scenarios for Vietnam, Ministry of Natural Resources and Environment, Ha Noi.
- Nash J.E., Sutcliffe J.V., 1970, River flow forecasting through conceptual models part I - A discussion of principles, Journal of Hydrology, 10 (3), 282-290, DOI: 10.1016/0022-1694(70)90255-6.
- Nguyen Q.H., Tran V.N., 2024, Temporal changes in water and sediment discharges: Impacts of climate change and human activities in the Red River basin (1958-2021) with projections up to 2100, Water, 16 (8), DOI: 10.3390/w16081155.
- Phan T.T.H., Sunada K., Oishi S., Sakamoto Y., 2010, River discharge in the Kone River basin (Central Vietnam) under climate change by applying the BTOPMC distributed hydrological model, Journal of Water and Climate Change, 1 (4), 269-279, DOI: 10.2166/wcc.2010.046.
- Sam T.T., Khoi D.N., 2022, The responses of river discharge and sediment load to historical land-use/land-cover change in the Mekong River Basin, Environmental Monitoring and Assessment, 194 (10), DOI: 10.1007/s10661-022-10400-5.
- Schmidt-Thomé P., Nguyen T.H., Pham T.L., Jarva J., Nuottimäki K., 2014, Climate change in Vietnam, [in:] Climate Change Adaptation Measures in Vietnam: Development and Implementation, P. Schmidt-Thomé, T.H. Nguyen, T.L. Pham, J. Jarva, K. Nuottimäki (eds.), Springer, 7-15, DOI: 10.1007/978-3-319-12346-2_2.
- Silberstein R., Aryal S., Durrant J., Pearcey M., Braccia M., Charles S., Boniecka L., Hodgson G., Bari M., Viney N. , 2012, Climate change and runoff in south-western Australia, Journal of Hydrology, 475, 441-455, DOI: 10.1016/j.jhydrol.2012.02.009.
- Takele G.S., Gebrie G.S., Gebremariam A.G., Engida A.N., 2022, Future climate change and impacts on water resources in the Upper Blue Nile basin, Journal of Water and Climate Change, 13 (2), 908-925, DOI: 10.2166/wcc.2021.235.
- Tariku T.B., Gan T.Y., Li J., Qin X., 2021, Impact of climate change on hydrology and hydrologic extremes of Upper Blue Nile River Basin, Journal of Water Resources Planning and Management, 147 (2), DOI: 10.1061/(ASCE)WR.1943-5452.000132.
- Tayara-Zobaida E., 2023, Hydrologic drought characteristics of selected basins in various climate zones of Lebanon, Meteorology Hydrology and Water Management, 11 (2), 28-51, DOI: 10.26491/mhwm/174194.
- Wild M., 2020, The global energy balance as represented in CMIP6 climate models, Climate Dynamics, 55 (3), 553-577, DOI: 10.1007/s00382-020-05282-7.
- Willkofer F., Schmid F.-J., Komischke H., Korck J., Braun M., Ludwig R., 2018, The impact of bias correcting regional climate model results on hydrological indicators for Bavarian catchments, Journal of Hydrology: Regional Studies, 19, 25-41, DOI: 10.1016/j.ejrh.2018.06.010.
- WMO, 2021, 2021 State of Climate Services: Water, World Meteorological Organization, available online at https://wmo.int/publication-series/2021-state-of-climate-services-water (data access 01.09.2025).
- Yang K., Chen T., Ao T., Zhang X., Zhou L., Gao D., 2022, Response of runoff in the upper reaches of the Minjiang River to climate change, Journal of Water and Climate Change, 13 (1), 260-273, DOI: 10.2166/wcc.2021.038.
- Yue Y., Yan D., Yue Q., Ji G., Wang Z., 2021, Future changes in precipitation and temperature over the Yangtze River Basin in China based on CMIP6 GCMs, Atmospheric Research, 264, DOI: 10.1016/j.atmosres.2021.105828.
- Ziehn T., Chamberlain M.A., Law R.M., Lenton A., Bodman R.W., Dix M., Stevens L., Wang Y.-P., Srbinovsky J., 2020, The Australian earth system model: ACCESS-ESM1.5, Journal of Southern Hemisphere Earth Systems Science, 70 (1), 193-214, DOI: 10.1071/ES19035.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b88c632d-eb41-4945-b40f-3675a6af0a0d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.