PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A conceptual model of the copper–porphyry ore formation based on joint analysis of deep 3D geophysical models: Sorskoe complex (Russia) case study

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Joint analysis of deep three-dimensional models of the electrical resistivity, seismic velocity, and density of the complex hosting the Sorskoe Cu–Mo deposit (Russia) is carried out aimed at finding geophysical markers characterizing the areas of ore generation, transportation and deposition. The three-dimensional lithology model of the study area is built based on the empirical relationship between the silica content of the rocks and seismic velocities. It is in agreement with geological and geochemical studies provided in this area earlier and could be used as a basis for forecasting locations of the copper–molybdenum ore deposits at depth. A conceptual model of the copper–porphyry complex explaining the mechanisms of ore generation, transportation from the lower to the upper crust and deposition in the upper crust is suggested. In particular, it is supposed that post-magmatic supercritical gas–water ore-bearing fluids are upwelling through the plastic crust due to the sliding of the fluid films along the cleavage planes of the foliated rocks while at the depths of the brittle upper crust this mechanism could be changed by volumetric fluid transportation along the network of large pores and cracks.
Czasopismo
Rocznik
Strony
1133--1144
Opis fizyczny
Bibliogr. 26 poz.
Twórcy
  • Geoelectromagnetic Research Centre IPE RAS, Moscow, Russia
autor
  • Geoelectromagnetic Research Centre IPE RAS, Moscow, Russia
Bibliografia
  • 1. Aleinikov AL, Nemzorov NI, Khalevin NI (1986) Multiwave seismic exploration for studying of the ore deposits. Nedra, Moscow, p 86 (in Russian)
  • 2. Bauer K, Schulze A, Ryberg T, Sobolev S, Weber M (2003) Classification of lithology from seismic tomography: a case study from Messum igneous complex, Namibia. J Geophys Res 108(B3):2152–2167. https://doi.org/10.1029/2001JB001073
  • 3. Berger BR, Ayuso RA, Wynn JC, Seal RR (2008) Preliminary model of porphyry copper deposits, USGS Open-file Report 2008–1321. 55 pp
  • 4. Berzina AP, Berzina AN, Serov PA, Gimon VO (2010) The petrogenic relationship between mafic and felsic rocks from the Sora porphyry Cu-Mo center (Kuznetsk Alatau): A geochemical and Sm-Nd isotope study. Dokl Earth Sci 430(1):28–33. https://doi.org/10.1134/S1028334X1001006X
  • 5. Castagna JP, Batzle ML, Eastwood RL (1985) Relationships between compressional-wave and shear-wave velocities in elastic silicate rocks. Geophysics 50(4):571–581. https://doi.org/10.1190/1.1441933
  • 6. Chen Xiang-Bin, Lü Qing-Tian, Jia-Yong Yan (2012) 3D electrical structure of porphyry copper deposit: a case study of Shaxi copper deposit. Appl Geophys 9(3):270–278. https://doi.org/10.1007/s11770-012-0337-1
  • 7. Heinrich CA, Gunther D, Audetat A, Ulrich T, Frischknecht R (1999) Metal fractionation between magmatic brine and vapor, determined by microanalysis of fluid inclusions. Geology 27: 755–758. https://doi.org/10.1130/0091-7613(1999)027<0755:MFBMBA>2.3.CO;2
  • 8. Henley RW, McNabb A (1978) Magmatic vapor plumes and groundwater interaction in porphyry copper emplacement. Econ Geol 73:1–20
  • 9. Holliday JR, Cooke DR (2007) Advances in geological models and exploration methods for copper and gold porphyry deposits. In: Milkereit B (ed) Proceedings of fifth decennial international conference on mineral exploration, 791–809
  • 10. Ito H, De Vilbiss J, Nur A (1979) Compressional and shear waves in saturated rock during water-steam transition. J Geophys Res 93:12081–12106
  • 11. Jones A (1992) Electrical conductivity of the continental lower crust. In: Fountain DM, Arculus RJ, Kay RW (eds) continental lower crust. Elsevier, Amsterdam, pp 81–143
  • 12. Kadurin IN, Belyavsky VV, Egorkin AV (2008) Geophysical study of the deep structure of Altai-Sayan folded belt: seismic and resistivity prospecting along the 3300-km long profile network. Tech. Rep. Geolfond, Moscow. 244 pp. (in Russian)
  • 13. Kuzin AM (2012) On possible nature of relatively low values of Vp/Vs in the ore deposits of fluid genesis. Geofizika 2:7–15 (in Russian)
  • 14. Letnikov FA (2000) Fluid regime of the endogenic processes in the continental lithosphere and the problems of metallogeny. In: Adushkin A (ed) Problemi globalnoi geodinamiki. GEOS, Moscow, pp 204–224 (in Russian)
  • 15. Middlemost EAK (1994) Naming materials in the magma/igneous system. Earth Sci Rev 37:215–224
  • 16. Parkhomenko EI (1967) Electrical properties of rocks. Plenum Press, New York, p 314
  • 17. Schon JH (2015) Physical properties of rocks: fundamentals and principles of petrophysics. Elsevier, Amsterdam, p 512
  • 18. Sillitoe RH (2010) Porphyry copper systems. Econ Geol 105(1):3–41. https://doi.org/10.2113/gsecongeo.105.1.3
  • 19. Sinclair WD (2007) Porphyry deposits. In: Goodfellow WD (ed) Mineral deposits of Canada. vol 5. Geological Association of Canada Special Publication. Ottawa, pp 223–243
  • 20. Sokolova LS, Duchkov AD (2008) Heat flow of the Altai-Sayan region: new data. Russ Geol Geophys 49:940–950. https://doi.org/10.1016/j.rgg.2008.03.007
  • 21. Sotnikov VI (2006) Copper-molibdenum ore formation: origin, problems of volume and bounds. Russ Geol Geophys 47(4):355–363. https://doi.org/10.1134/S107570150606002Xr
  • 22. Spichak VV, Menvielle M, Roussignol M (1999) Three-dimensional inversion of MT fields using bayesian statistics. In: Oristaglio M, Spies B (eds) 3D Electromagnetics. SEG Publ., GD7, Tulsa, pp 406–417
  • 23. Tavakoli S, Dehghannejad M, García Juanatey MA, Bauer TE, Weihed P, Elming S-A (2016) Potential Field. Geoelectrical and reflection seismic investigations for massive sulphide exploration in the skellefte mining District, Northern Sweden, Acta geophysica 64(6):2171–2199. https://doi.org/10.1515/acgeo-2016-0088
  • 24. Ulrich T, Gunther D, Heinrich CA (1999) Gold concentrations of magmatic brines and the metal budget of porphyry copper deposits. Nature 399:676–679
  • 25. Vjunov DL, Nosirev MYu, Stepanov VA (2007) Complex interpretation of geophysical and geochemical data for the prognosis of mineralization: a case study of the upper Amur region. Dokl Earth Sci 413(2):384–387. https://doi.org/10.1134/S1028334X07030142
  • 26. Williams-Jones AE, Heinrich CA (2005) Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Econ Geol 100:1287–1312. https://doi.org/10.2113/gsecongeo.100.7.1287
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8896ec5-ffc0-4fb8-9f92-3ea48d2925cd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.