
LOAD SPECTRUM ANALYSIS WITH OPEN SOURCE
SOFTWARE – AN APPLICATION EXAMPLE

Marek S. Łukasiewicz 0000-0002-3034-1709

Warsaw University of Technology, Faculty of Power and Aeronautical Engineering
Nowowiejska 24, 00-665 Warsaw, Poland

marek@lukasiewicz.tech

Abstract
Processing of digital experimental data has become a key part of virtually every

research project. As sensors get both more diverse and cheaper, the amount of information
to be handled greatly increases as well. Especially fatigue failure modelling requires by
its nature large numbers of samples to be processed, and visualised. The presented paper
is based on analysis of load data gathered in flight on an unmanned aircraft. A few
versions of an analysis program were developed and considered for the use case. Each
implementation included ingesting the data files, creating transfer arrays and the “rain
flow counting” algorithm. For the sake of the ease of use and functionality, the version
based on Python programming language was selected for presentation. Short development
iteration time of this approach allowed gaining new insights by tweaking parameters to
better represent actual acquired data. Both the results and the software itself can be
easily viewed in a web browser and run with modifications without the need to install
any software locally. The developed software is meant as a demonstration of capabilities
of open source computation tools dedicated to aerospace and mechanical engineering
research, where they remain relatively unpopular. 

Keywords: load spectrum, rainflow counting, data visualisation
Article Category: Research Article

INTRODUCTION

During the Fatigue and Aircraft Diagnostic Systems course, students are taught several
calculation methods suited for estimation and extrapolation of fatigue cycles acting upon
a structure. The main goal of the exercises done during the course is to get students
acquainted with basic procedures and phenomena of aircraft fatigue. The examples given
are typically simple enough to allow manual solutions with a pen and paper approach.
Because of repeating the same actions many times, it seems that automating the task with
software should be the preferred method of solving these problems.

DOI: 10.2478/fas-2021-0003
FATIGUE OF AIRCRAFT STRUCTURES

Volume 2021: Issue 13, pp. 17-30

This work is licensed under a Creative Commons 
Attribution-NonCommercial-NoDerivatives 
4.0 International License

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.2478/fas-2021-0003

https://orcid.org/0000-0002-3034-1709
mailto:marek@lukasiewicz.tech
https://orcid.org/0000-0002-3034-1709


This paper provides an example of how software tools used in the rapidly growing
fields of data science and machine learning can be utilised to create visually appealing
interactive solutions that do not require extensive programming experience to
implement. Additionally, over the last years, there has been a sudden increase in remote
teaching at all levels, including higher education. This has in turn produced a demand
for teaching aids that can be easily shared online. It is hoped that this paper can be 
a useful reference for implementing a similar tool for classroom use and/or research.

METHODS AND TOOLS

All presented algorithms operate on one dimensional data. The real flight data
consists of a time series of load factor observed on “PW-ZOOM” fixed wing unmanned
aerial vehicle during a photogrammetry flight [1]. Take-off and a number of test
manoeuvres were performed with manual remote control, after which the aircraft was
switched to automatic operation. At the moment of engaging the on-board flight control
unit, a sudden change in input to control surfaces caused a momentary increase in
structural load, which was twice larger than any other value measured. In the Figure 1
this moment of flight was marked with red circles in the map and load factor plot.

Figure 1. Trajectory of the analysed flight of PW-ZOOM UAV 
and the resulting load factor plot.



The method used follows the established algorithm [2] of quantization of a continuous
signal to permit easier processing in further steps. As a result of that, an integer load level
number is assigned to every load factor value. The time data is discarded, since only 
the number of cycles is considered in fatigue estimation, not their individual temporal
characteristics. The sequence of integers obtained this way will typically have many
repeated values representing a constant load which does not contribute to material
fatigue. In the next filtering step, all consecutive repetitions of a load level are removed
along with intermediate numbers between local extrema. In the resulting sequence, there
are only alternating positive and negative changes in load level.
Every interval between two values in the load level sequence corresponds to 

a decrease or increase in the measured load. Each instance of a specific load level
changing to another one is then counted and aggregated in a Transfer Array. This time-
independent representation allows researchers to reason about and prognose loads much
more easily than when using individual measurements.

Rain flow counting

For some load signals sequences, their direct transfer array representation 
as described above may not model accurately the character of increments caused by
the acting loads. Suppose a signal is processed which is a sum of a slow oscillation
with a large amplitude, and a faster oscillation with a smaller amplitude, but still
spanning multiple load levels. Such a set of movement components is typical of many
real mechanical systems. In the resulting transfer array, only many small load-transfers
will appear, corresponding to the more frequent changes. A simple example of such 
a case is presented in Figure 2.

Figure 2. Example load history with corresponding transfer array.

The original, large amplitude component can be retrieved using the rain flow counting
algorithm proposed by [3]. In this method, each transfer will be represented by a “rain
stream” flowing along from earlier to later data points. Local maxima are “peaks”, while
local minima are “valleys”. Naturally, a bigger maximum value corresponds to a “taller
peak”, and a minimum of a smaller value to a “deeper valley”.



With this nomenclature defined, the specific set of rules used in this paper is as follows:
· Every valley creates a stream that flows until it ends, before the next stream is

simulated.
· The stream flows along the graph of the local extremes chain until the closest

peak and then “falls”:
o If the end of the data is reached, the stream is terminated;
o If the next valley is deeper than the one from which the stream started, 

the stream is terminated;
o If the next peak is not taller than the one it is falling from, it is ignored;
o If the next peak is taller than the one it is falling from, the graph is intercepted

at the value of the peak the stream falls from, and then flows along this line;
· If the stream collides with a trace of a previous stream, it is terminated.
· The whole algorithm is repeated for streams originating from each peak, flowing

towards valleys.

As seen on the following plot, this relatively simple set of rules prioritises larger
changes in the value, even if they are not monotonic. The total number of transfers is
preserved. To convey the idea of rain streams flowing, the plot is oriented so that the streams
“fall” towards the bottom of page, as shown in Figure 3. The first set, starting from valleys
is drawn in red, and the set starting from peaks in green. The corresponding entries in 
the half-cycle array, use the same colour. To save space, all other plots throughout this
paper are presented in the typical orientation, with the sample index on the horizontal axis.

Figure 3. Example of rain flow counting result.

Comparison of software solutions

Currently many tools are available to facilitate scientific computation and processing
of data. The following sections aim to compare the tools considered for this application,
together with their perceived advantages and disadvantages. It should be noted that this



evaluation is based solely on the subjective opinion. However, this opinion was 
formed only after using each of the mentioned tools for processing and visualisation of
experimental results.
There are commercial software packages dedicated to fatigue analysis. However, they

enforce specific workflow and analysis methods. Since they are made for professional
users, it is harder to use them for teaching purposes. Because of this use case, a custom
solution would be preferred.
The closest match for the commercial packages would be a solution developed with 

a basic window interface library in a compiled language, e.g. C++ or C#. The main issue
with this approach is that such applications typically require months of work and
extensive software engineering experience. Following a popular [4] trend in software
development, using web technologies (i.e. JavaScript, HTML, CSS) is a viable choice
for any application with a graphical user interface. This approach allows most extensive
customization of appearance. It requires however previous acquaintance with a large
number of libraries and solutions.

Figure 4. Screenshot of the browser-based version 
of the analysis program.

For mechanical engineering researchers, MATLAB remains the preferred choice 
with wide adoption in academia, and many years of experience for most tutors. Using 
the educational license, it is easy to forget that this software has a price that is prohibitively
high for many companies, leaving some graduates without the tools they were trained to
use.
Recently, using Python programming language organised into Jupyter [5] notebooks

becoming increasingly popular choice for presenting machine learning and data science
papers. Because the components used for creating the visualisation are open source
software, the software can be easily run by anyone interested. Moreover, it can be integrated
with third-party services, (e.g. like [6]), allowing a variety of sharing, collaboration and
workflow options.



IMPLEMENTATION

Given the qualities described in the preceding section, the Jupyter-Python
environment was selected for solution development. Apart from the standard library,
two additional packages were utilised. The numpy package allows for performant
computations on n-dimensional matrices of numbers [7]. The matplotlib package
provides plotting capabilities [8] with much customizability and good integration with
both Jupyter and numpy. These libraries are often used in notebooks, and as such are
preinstalled in many Jupyter environments.
The program was prepared in two versions. The simple.ipynb notebook makes use

of fewer features and is extensively annotated to serve as an example of an amount of
code needed for the classroom presentation. Conversely, the advanced.ipynb is intended
for processing of actual flight data. The biggest differences are formatting, handling
larger sets of data, and file input/output. For instructions how to access and run both
versions, see the appendix.
Original data received from an external program parsing flight logs was in an unusual

format, with some information missing. To decouple this specific case from the rest of
the application, a very simple Python script was used to convert the data file into 
a typical .csv format.

Figure 5. Data flow block diagram.

The development was accomplished using Visual Studio Code, which is an open
source text editor with Jupyter notebook integration among other features. Backups and
versioning were accomplished using Git server hosted by Github.

Figure 6. Screenshot of local development environment.



RESULTS

As described above, the original data was ingested into the software from a text file.
The first step was analysis of the received sequence. For the analysed flight, almost all
of the load factor values measured were in a very narrow region of flight envelope, as
can be seen in histogram presented in Figure 7. The outliers on both ends of the range
are shown in Table 1.

Figure 7. Histogram of load factor values in the analysed data.

Table 1. Extreme values for the analysed data.

Because of that distribution, it was decided to use a custom assignment of load levels
to load factor, instead of the typical assignment based on maximal certified range of
loads. For this aircraft, this would be LL=31 for nz=6 and LL=3 for nz= -3. This
change leads to a more diverse sequence of load levels, and helps to better illustrate
capabilities of the tool. The mapping can be easily adjusted by modifying member
variables of the Extents class. In case any value falls outside the given boundaries, which
may be true for some outliers, the assigned load level is either the minimal LL=1 or
maximal LL=32, whichever is closer.
A simple iterative algorithm was used to remove the duplicates and samples that

were not local maxima in the sequence. This step reduced the length of the sequence
from 11419 points to 4995. On the following plots, the first 25 points are shown. 
As expected, the filtered sequence consists of alternating increases and decreases in
load level. Figure 8 shows the samples after quantizing the signal to load levels, and
the resulting sequence of local extremes.



Figure 8. Filtering load level sequence for local extrema, 
illustrating selected and rejected samples.

Subsequently, all differences between consecutive values were summed to produce
the transfer array. The results correspond to the received data, with the highest counts of
repetitions close to the identity diagonal. Comparing the typical level assignment
presented in Table 2 with the one based on data distribution in Table 3, one can see that
the standard transfer array is very sparse for the same sequence.

Figure 9. Visualisation of rain flow counting 
for the first 25 samples in filtered data.



Table 2. Transfer array for standard level assignment, 2868 load transfers in total.



Table 3. Transfer array for level assignment based on observed values, 
4994 load transfers in total.

The rain flow counting algorithm was applied to both sets of data. The actual
implementation contains some additional logic to allow the stream trajectories to be
displayed along the sequence plot. However, the key information, i.e. the starting and
ending load level is as defined. In Table 4 and Table 5, the transfers that do not
correspond to a full load cycle are marked with square brackets.



Table 4. Half-cycle transfer array from rain flow counting for standard assignment 
of levels, 2868 load transfers in total.



Table 5. Half-cycle transfer array from rain flow counting for level assignment
based on observed data, 4994 load transfers in total.

The following plot uses a logarithmic colormap to show the difference that the rain
flow counting makes for each cell of the transfer array. As stated in the introduction,
the purpose of this algorithm is to extract the larger oscillation components from data.
In the following graph, one can see that many transfers corresponding to moderate
changes were changed to sets of smaller and larger changes. Both the transfer count
and the maximal values were preserved unchanged. However, the extreme values are
now reached from farther states, corresponding to “a rain stream dripping” from
consecutive peaks. According to many models, including the classic Miner-Palmgren
hypothesis [9], it is the cycles with larger amplitudes that contribute the most to fatigue
failure of a component.



Figure 10. Logarithmic heatmap of change introduced 
by rain flow counting.

CONCLUSIONS

The selected approach of using Python notebooks has proven viable for fatigue load
analysis. Having a transparent implementation available allowed researchers to
customize load level assignment and obtain much better resolution of the results. Only
the first steps of processing were added at this point, but the software will be extended
with more visualisation and extrapolation options using the same functionalities of 
the libraries. By developing own solution with didactics in mind, intermediate steps and
values could be highlighted to aid teaching the methods used.
Compared to other approaches to developing this application, notebooks were by far

the easiest to use thanks to availability of matplotlib plotting library, customisability of
Python scripting, and short iteration time provided by Jupyter. The second fastest in
terms of development time version was the web application. An objective, but still crude
comparison is based on the fact that the web version has approximately 609 thousand
characters in its source code. Meanwhile, the notebook version has only 11.4 thousand
characters (fewer than half the number this paper contains), while having more features
implemented. Both counts only include the code written by the author, without libraries.

Acknowledgements
The author wishes to thank Assoc. Prof. Mirosław Rodzewicz, PhD. Eng. of Aircraft Design
Division, Faculty of Power and Aeronautical Engineering for providing the flight data, with
permitting its release with a public license and additionally offering helpful advice on writing
this paper.



REFERENCES

[1] Korczak-Abshire, M., Zmarz, A., Rodzewicz, M. et al., (2019). Study of fauna population
changes on Penguin Island and Turret Point Oasis (King George Island, Antarctica) using
an unmanned aerial vehicle, Polar Biol., vol. 42, no. 1, pp. 217–224, doi: 10.1007/s00300-
018-2379-1.

[2] Kossira, H. and Reinke, W. (1986). “Entwicklung eines Belastungskollektivs fur Segel-
und Motorflugzeuge,” IFL-IB, TU Braunschweig, no. 86-O5.

[3] Matsuishi, M. and Endo, T. (1968). Fatigue of metals subjected to varying stress, Japan
Soc. Mech. Eng. Fukuoka, Japan, vol. 68, no. 2, pp. 37–40.

[4] Stack Exchange Inc, (2021). Stack Overflow Developer Survey 2021. Retrieved December 1,
2021, from https://insights.stackoverflow.com/survey/2021#technology.

[5] Kluyver, T., Ragan-Kelley, B., Pérez, F. et al., (2016). Jupyter Notebooks – a publishing
format for reproducible computational workflows, Loizides, Fernando and Scmidt, Birgit
(eds.) in Positioning and Power in Academic Publishing: Players, Agents and Agendas,
IOS Press, pp. 87–90, doi: 10.3233/978-1-61499-649-1-87.

[6] Mordvintsev, A., Randazzo, E., Niklasson, E. and Levin, M. (2020). Growing Neural
Cellular Automata, Distill, vol. 5, no. 2, doi: 10.23915/distill.00023.

[7] Harris, C.R., Millman, K.J., van der Walt, S.J. et al., (2020). Array programming with
NumPy, Nature, vol. 585, no. 7825, pp. 357–362, doi: 10.1038/s41586-020-2649-2.

[8] Hunter, J. D. (2007). Matplotlib: A 2D graphics environment, Comput. Sci. Eng., vol. 9,
no. 3, pp. 90–95, doi: 10.1109/MCSE.2007.55.

[9] Miner, M.A. (1945). Cumulative Damage in Fatigue, J. Appl. Mech., vol. 12, no. 3, pp.
A159–A164, doi: 10.1115/1.4009458.

APPENDIX

The reader is invited to inspect the code and experiment on their own with an
interactive version, by visiting one of the following pages. Note that read-only display
will be immediately available after webpage load, but a short wait will be needed before
the server starts the environment for the interactive examples.
· Simple version, read-only:

https://nbviewer.org/github/Maarrk/zidkl-article/blob/master/simple.ipynb
· Simple version, interactive:

https://mybinder.org/v2/gh/Maarrk/zidkl-article/master?filepath=simple.ipynb
· Advanced version, read-only:

https://nbviewer.org/github/Maarrk/zidkl-article/blob/master/advanced.ipynb
· Advanced version, interactive:

https://mybinder.org/v2/gh/Maarrk/zidkl-article/master?filepath=advanced.ipynb
· Full repository contents: https://github.com/Maarrk/zidkl-article

https://doi.org/10.1115/1.4009458
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
httpr://doi.org/10.23915/distill.00023
https://doi.org/10.3233/978-1-61499-649-1-87
https://doi.org/10.1007/s00300-018-2379-1
https://doi.org/10.1007/s00300-018-2379-1

