PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

On the Application of Laser Shock Peening as a Manufacturing and Repair Process to Improve the Fatigue Performance of Refill Friction Stir Spot-Welded AA2024-T3 Joints

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The refill friction stir spot welding (refill FSSW) process is an innovative solid-state spot-welding method, which has evolved from the concept of friction stir welding. Compared to riveting, the process has the advantage of avoiding stress concentration by eliminating holes. In addition, weight can be saved compared to riveting as no additional material is needed. However, the fatigue strength of refill FSSW joints under cyclic loading is still not satisfactory. To address this challenge, laser shock peening (LSP) is investigated as an innovative residual stress engineering technique to improve the fatigue performance of refill FSSW AA2024-T3 joints. Two application scenarios are investigated, one investigating the LSP technique as a complementary manufacturing process to the refill FSSW technology, and the other investigating the LSP technique as a repair process for damaged joints. The fatigue test results showed that the application of the LSP treatment can significantly improve the fatigue behaviour of the refill FSSW overlap joints. In terms of Basquin fatigue strength, the LSP treatment resulted in an improvement by a factor of 1.51 and 2.82 for the one- and two-sided LSP-treated specimens, respectively. The life of specimens with refill FSSW joints that had been specifically pre-damaged by stopping the fatigue test at approximately 51%, 75% and 83% of the number of cycles to the Basquin fatigue strength, applying LSP treatment and continuing the fatigue test was also significantly extended. The results of this study show that LSP is a very effective technique for significantly extending the fatigue life of refill FSSW joints. Therefore, the combination of these two manufacturing processes, refill FSSW and LSP, represents a promising technology for industrial companies that require high fatigue performance for their structural components.
Rocznik
Tom
Strony
29--44
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
autor
  • Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
  • Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
  • Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
  • Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
  • Institute for Production Technology and Systems, Leuphana University of Lüneburg, Universitätsallee 1, D-21335 Lüneburg, Germany
autor
  • Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
  • Institute of Material and Process Design, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
Bibliografia
  • Achintha, M., Nowell, D., Furfari, D., Sackett, E.E., Bache, M.R. (2014). Fatigue behavior of geometric features subjected to laser shock peening: Experiments and modeling. International Journal of Fatigue, 62, 171-179. https://doi.org/10.1016/j.ijfatigue.2013.04.016
  • Becker, N., Kuhn, D., Piochowiak, J., Klusemann, B. (2025). Fatigue life enhancement via residual stress engineering due to local forming during refill friction stir spot welding. Journal of Materials Research and Technology, 36, 2951-2959. https://doi.org/10.1016/j.jmrt.2025.03.205
  • Berthe, L., Fabbro, R., Peyre, P., Bartnicki, E. (1999). Wavelength dependent of laser shock-wave generation in the water-confinement regime. Journal of Applied Physics, 85, 7552-7555. https://doi.org/10.1063/1.370553
  • Brzostek, R.C., Suhuddin, U., dos Santos, J.F. (2018). Fatigue assessment of refill friction stir spot weld in AA 2024-T3 similar joints. Fatigue and Fracture of Engineering Materials and Structures, 41(5), 1208-1223. https://doi.org/10.1111/ffe.12764
  • Busse, D.O., Irving, P.E., Ganguly, S., Furfari, D., Polese, C. (2018). Improving fatigue performance of AA 2024-T3 clad aeronautical riveted lap-joints using laser-peening, In: Proceedings of the 29th ICAF Symposium, Curran Associates Inc., New York.
  • Chupakhin, S., Kashaev, N., Huber, N. (2016), Effect of elasto-plastic material behaviour on determination of residual stress profiles using the hole drilling method, The Journal of Strain Analysis for Engineering Design, 51(8), 572-581. https://doi.org/10.1177/0309324716663940
  • Ding, K., Ye, L. (2006). Laser Shock Peening: Performance and Process Simulation. Woodhead Publishing, Cambridge.
  • Gariépy, A., Bridier, F., Hoseini, M., Bocher, P., Perron, C., Lévesque, M. (2013). Experimental and numerical investigation of material heterogeneity in shot peened aluminium alloy AA2024-T351. Surface and Coatings Technology, 219, 15-30. https://doi.org/10.1016/j.surfcoat.2012.12.046
  • Fairand, B.P., Clauer, A.H., Jung, R.G., Wilcox, B.A. (1974). Quantitative assessment of laser‐induced stress waves generated at confined surfaces. Applied Physics Letters, 25, 431-433. https://doi.org/10.1063/1.1655536
  • Hatamleh, O. (2009). A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. International Journal of Fatigue, 31(5), 974-988. https://doi.org/10.1016/j.ijfatigue.2008.03.029
  • Kallien, Z., Keller, S., Ventzke, V., Kashaev, N., Klusemann, B. (2019). Effect of laser peening process parameters and sequences on residual stress profiles. Metals, 9(6), 655. https://doi.org/10.3390/met9060655
  • Kashaev, N., Riekehr, S., Falck, R., et al. (2015). Development of laser beam welding concepts for fuselage panels. In: Proceedings of the 5th CEAS Air & Space Conference, Delft, paper no. 15.
  • Kashaev, N., Ventzke, V., Horstmann, M., et al. (2017). Effects of laser shock peening on the microstructure and fatigue crack propagation behaviour of thin AA2024 specimens. International Journal of Fatigue, 98, 223-233. https://doi.org/10.1016/j.ijfatigue.2017.01.042
  • Kashaev, N., Chupakhin, S., Ventzke, V., et. al. (2018). Fatigue Life Extension of AA2024 Specimens and Integral Structures by Laser Shock Peening. MATEC Web of Conferences, 165, 18001. https://doi.org/10.1051/matecconf/201816518001
  • Kashaev, N., Ventzke, V., Çam, G. (2018). Prospects of laser beam welding and friction stir welding processes for aluminum airframe structural applications. Journal of Manufacturing Processes, 36, 571-600. https://doi.org/10.1016/j.jmapro.2018.10.005
  • Kashaev, N., Ushmaev, D., Ventzke, V., Klusemann, B., Fomin, F. (2020). On the application of laser shock peening for retardation of surface fatigue cracks in laser beam-welded AA6056. Fatigue and Fracture of Engineering Materials and Structures, 43(7), 1500-1513. https://doi.org/10.1111/ffe.13226
  • Kashaev, N., Keller, S., et al. (2023). Retardation of fatigue cracks in welded structures through laser shock peening. In: Proceedings of the 31st ICAF Symposium, Delft, paper no. 122.
  • Korbel, A. (2022). Effect of aircraft rivet installation process and production variables on residual stress, clamping force and fatigue behaviour of thin sheet riveted lap joints. Thin-Walled Structures, 181, 110041. https://doi.org/10.1016/j.tws.2022.110041
  • Montross, C.S., Wei, T., Ye, L., Clark, G., Mai, Y.W. (2002). Laser shock processing and its effects on microstructure and properties of metal alloys: a review. International Journal of Fatigue, 24, 1021-1036. https://doi.org/10.1016/S0142-1123(02)00022-1
  • Ocaña, J.L., Correa, C., Porro, J.A., Díaz, M., de Lara, L.R., Peral, D. (2015). Induction of through-thickness compressive residual stress fields in thin Al2024-T351 plates by laser shock processing. International Journal of Structural Integrity, 6(6), 725-736. https://doi.org/10.1108/IJSI-10-2014-0051
  • Richards, D.G., Prangnell, P.B., Williams, S.W., Withers, P.J. (2008). Global mechanical tensioning for the management of residual stresses in welds. Materials Science and Engineering: A, 489(1-2), 351-362. https://doi.org/10.1016/j.msea.2007.12.042
  • Schilling, C., dos Santos, J. (2004). US Patent, no. US 6,722,556 B2.
  • Schijve, J. (2001). Fatigue of Structures and Materials, 2nd ed., Springer, Delft.
  • Sikhamov, R., Fomin, F., Klusemann, B., Kashaev, N. (2020). The influence of laser shock peening on fatigue properties of AA2024-T3 alloy with a fastener hole. Metals, 10(4), 495. https://doi.org/10.3390/met10040495
  • Steinzig, M., Ponslet, E. (2003). Residual stress measurement using the hole drilling method and laser speckle interferometry: Part I. Experimental Techniques, 27(3), 43-46. https://doi.org/10.1111/j.1747-1567.2003.tb00114.x
  • Sticchi, M., Schnubel, D., Kashaev, N., and Huber, N. (2015). Review of residual stress modification techniques for extending the fatigue life of metallic aircraft components. Applied Mechanics Reviews, 67(1), 010801. https://doi.org/10.1115/1.4028160
  • Toparli, M.B., Fitzpatrick, M.E. (2019). Effect of Overlapping of Peen Spots on Residual Stresses in Laser-Peened Aluminium Sheets. Metallurgical and Materials Transactions A, 50, 1109-1112. https://doi.org/10.1007/s11661-018-05100-0
  • Yang, Y., Dong, P., Tian, X., Zhang, Z. (1998). Prevention of welding hot cracking of high strength aluminium alloys by mechanical rolling. In: Proceedings of the 5th International Conference on Trends in Welding Research. Eds. J. M. Vitek, S.A. David, J. A. Johnson, H. B. Smart and T. DebRoy, Pine Mountain, Georgia, p. 700-705.
Uwagi
This article was presented at the 32nd Symposium of ICAF https://www.icaf2025.com/
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8879211-3b1d-4c47-84ea-936cb069f323
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.