PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effects of the distribution of solid particles on the rheological properties and buildability of 3DPM fresh pastes with different FA/GGBFS content

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
3D printing technology has attracted great attention from the construction industry for its superior performance compared with traditional construction technology. In this study, the rheological properties of fresh mixed pastes with different contents of fly ash (FA) and granular ground blast furnace slag (GGBFS) were evaluated by analyzing rheology indices and the fitting of the Bingham model, and the relationship between the rheological properties, the buildability of 3D Printing Material (3DPM) and n value of the Rosin-Rammler distribution function was established. The results show that with increasing FA or GGBFS content, the rheological properties (fluidity, yield stress, and plastic viscosity) of fresh mixed pastes first improved and then deteriorated, and the n value (constant for the width of the particle distribution) first decreased and then increased. When the FA content was 20%, the paste fluidity reached a maximum value of 178 mm, the n value (1.01782) was the smallest, the particle size distribution was the widest, the accumulation was the best, and the buildability of 3DPM was the best. In addition, it can be seen from the SEM analysis that FA and GGBFS participate in the cement hydration to a limited extent, which mainly play the role of compaction and adjustment of particle size distribution. This is consistent with the test results of XRD. In short, by adjusting the amount of FA and GGBFS, the particle size distribution of the whole cementitious material system changes. When the fluidity of 3DPM was between 160 and 180 mm, the smaller the n value of the Rosin-Rammler distribution function, the better its buildability was.
Rocznik
Strony
art. no. e82, 2023
Opis fizyczny
Bibliogr. 50 poz., rys., tab., wykr.
Twórcy
autor
  • College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
autor
  • College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
  • Ministry of Education Ecological Cement Engineering Research Center, Xi’an 710055, China
  • Shaanxi Ecological Cement Concrete Engineering Technology Research Center, Xi’an  710055, China
autor
  • College of Materials Science and Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
Bibliografia
  • 1. Asprone D, Menna C, Bos FP, et  al. Rethinking reinforcement for digital fabrication with concrete. Cem Concr Res. 2018;112:111-21.
  • 2. Wolfs RJM, Bos FP, Salet TAM. Hardened properties of 3D printed concrete: the influence of process parameters on interlayer adhesion. Cem Concr Res. 2019;119:132-40.
  • 3. Xu Z, Li H, Zhang D, et al. Research progress of cementitious materials and related properties for building 3D printing. Mater Rep. 2023;12:1-29 (in Chinese).
  • 4. De Schutter G, Lesage K, Mechtcherine V, et al. Vision of 3D printing with concrete-technical, economic and environmental potentials. Cem Concr Res. 2018;112C:25-36.
  • 5. Xiao XW, Ma RQ, Tian W. Research and development status and development strategy of 3D printing construction. Constr Technol. 2017;01:5-8 (in Chinese).
  • 6. Li D, Wang D, Ren C, et al. Investigation of rheological properties of fresh cement paste containing ultrafine circulating fluidized bed fly ash. Constr Build Mater. 2018;188:1007-13.
  • 7. Wallevik OH, Feys D, Wallevik JE, et al. Avoiding inaccurate interpretations of rheological measurements for cement-based materials. Cem Concr Res. 2015;78:100-9.
  • 8. Wang Y K, Yang Q R. Effect of additives on rheological properties and printability of 3D printing lightweight aggregate. Journal of Building Materials, 2021. http://kns.cnki.net/kcms/detail/31.1764. TU.20200628.1100.016.html. (In Chinese).
  • 9. Chen MX, Li LB, Wang JA, et al. Rheological parameters and building time of 3D printing sulphoaluminate cement paste modified by retarder and diatomite. Constr Build Mater. 2020;234: 117391.
  • 10. Panda B, Ruan S, Unluer C, et al. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos B. 2019;165:75-83.
  • 11. Islam LA. Correlating slump, slump fow, Vebe and flow tests to rheological parameters of high-performance concrete. Mater Res. 2009;12(1):75-8.
  • 12. Alghamdi H, Nair S, Neithalath N. Insights into material design, extrusion rheology, and properties of 3D-printable alkali-activated fly ash-based binders. Mater Des. 2019;167: 107634.
  • 13. Guo X, Yang J, Xiong G. Influence of supplementary cementitious materials on rheological properties of 3D printed fly ash based geopolymer. Cement Concr Compos. 2020;114(6): 103820.
  • 14. Austin SA, Robins PJ, Goodier CI. The rheological performance of wet-process sprayed mortars. Mag Concr Res. 1999;51(5):341-52.
  • 15. Marchon D, Kawashima S, Bessaies-Bey H, et  al. Hydration and rheology control of concrete for digital fabrication: potential admixtures and cement chemistry. Cem Concr Res. 2018;112:96-110.
  • 16. Jeong J, Chuta E, Ramezani H, et al. Rheological properties for fresh cement paste from colloidal suspension to the three-element Kelvin-Voigt model. Rheol Acta. 2019;59(1):47-61.
  • 17. Choi BI, Kim JH, Shin TY. Rheological model selection and a general model for evaluating the viscosity and microstructure of a highly-concentrated cement suspension. Cem Concr Res. 2019;123: 105775.
  • 18. Panda B, Unluer C, Tan MJ. Extrusion and rheology characterization of geopolymer nanocomposites used in 3D printing. Compos B Eng. 2019;176: 107290.
  • 19. Malaeb Z, Hachem H, Tourbah A, et al. 3D concrete printing: Machine and mix design. Int J Civil Eng. 2015;6(6):14-22.
  • 20. Ma GW, Salman NM, Wang L, et al. A novel additive mortar leveraging internal curing for enhancing interlayer bonding of cementitious composite for 3D printing. Constr Build Mater. 2020;244:118305.
  • 21. Rahul A, Santhanam M. Evaluating the printability of concretes containing lightweight coarse aggregates. Cement Concr Compos. 2020;109: 103570.
  • 22. Soltan DG, Li VC. A self-reinforced cementitious composite for building-scale 3D printing. Cement Concr Compos. 2018;90:1-13.
  • 23. Zhao J, Wang D, Wang X, et al. Ultrafine grinding of fly ash with grinding aids: Impact on particle characteristics of ultrafine fly ash and properties of blended cement containing ultrafine fly ash. Constr Build Mater. 2015;78:250-9.
  • 24. Lee SH, Kim HJ, Sakai E, et al. Effect of particle size distribution of fly ash-cement system on the fluidity of cement pastes. Cem Concr Res. 2003;33(5):763-8.
  • 25. Guo XL, Shi HS. Effects of calcium on performance of fly ash based geopolymeric cement. Cement. 2011;4:11-3.
  • 26. Zhang LS, He SH, Zhou HF, et al. The influence of slag content on the high temperature performance of fly ash based geopolymer concrete. New Building Material. 2020;10:36-9.
  • 27. Olorunsogo FT. Particle size distribution of GGBS and bleeding characteristics of slag cement mortars. Cem Concr Res. 1998;28:907-19.
  • 28. Xu Z, Zhang D, Li H, et al. Effect of FA and GGBFS on compressive strength, rheology, and printing properties of cement-based 3D printing material. Constr Build Mater. 2022;339: 127685.
  • 29. Huo L, Lin XQ, Zhang T. 3D printing technique and use for mortar. Beijing: Geological Publishing House; 2018. (in Chinese).
  • 30. Wang DM, Li XL, Liu Z. Preparation and working performance of fly ash/phosphorus slag powder modified cement-based 3D printing materials. Bull Chin Ceram Soc. 2020;39(08):2372-8+2392.
  • 31. Chen YN, Jia LT, Liu C, et al. Mechanical anisotropy evolution of 3D-printed alkali-activated materials with different GGBFS/FA combinations. J Build Eng. 2022;50: 104126.
  • 32. Zheng DP, Wang DM, Li DL, et al. Study of high volume circulating fluidized bed fly ash on rheological properties of the resulting cement paste. Constr Build Mater. 2017;135:86-93.
  • 33. Zhou J, Uhlherr P, Fang TL. Yield stress and maximum packing fraction of concentrated suspensions. Rheol Acta. 1995;34(6):544-61.
  • 34. Dai X, Aydn S, Yardımcı MY, et al. Effects of activator properties and GGBFS/FA ratio on the structural build-up and rheology of AAC. Cem Concr Res. 2020;138: 106253.
  • 35. Cong X, Zhou W, Elchalakani M. Experimental study on the engineering properties of alkali-activated GGBFS/FA concrete and constitutive models for performance prediction. Constr Build Mater. 2020;240: 117977.
  • 36. Zhao H, Sun W, Wu XM, et al. The properties of the self-compacting concrete with fly ash and ground granulated blast furnace slag mineral admixtures. J Clean Prod. 2015;95:66-74.
  • 37. Xiao K, Li D, Wang YT, et al. Influence of kenaf stalk on printability and performance of 3D printed industrial tailings based geopolymer. Constr Build Mater. 2022;315: 125787.
  • 38. Wei X, Ming F, Li D, et  al. Influence of water content on mechanical strength and microstructure of alkali-activated fly Ash/GGBFS mortars cured at cold and polar regions. Materials. 2020;13(1):138.
  • 39. Tambun R, Furukawa K, Hirayama M, et al. Measurement and estimation of the particle size distribution by the buoyancy weighing-bar method and the Rosin-Rammler equation. J Chem Eng Jpn. 2016;49(2):229-33.
  • 40. Yu R, Spiesz P, Brouwers HJH. Mix design and properties assessment of Ultra-High Performance Fibre Reinforced Concrete (UHPFRC). Cem Concr Res. 2014;56:29-39.
  • 41. Weng Y, Li M, Tan M, et al. Design 3D printing cementitious materials via Fuller Thompson theory and Marson-Percy model. Constr Build Mater. 2018;163:600-10.
  • 42. Ye H, Guo X, Wang R, et al. Relationship among particle characteristic, water film thickness and fowability of fresh paste containing different mineral admixtures. Constr Build Mater. 2017;153:193-201.
  • 43. Hwang HJ, Lee SH, Lee WJ. Effect of particle size distribution of binder on the rheological properties of slag cement pastes. J Korean Ceram Soc. 2007;44(1):6-11.
  • 44. Krauss HW, Dressler I, Budelmann H. Experimental analysis of the relation between rheological properties of suspensions and their microstructure. Chem Ing Tec. 2018;90(6):881-7.
  • 45. Vaitkevičius V, Šerelis E, Kerševičius V. Effect of ultra-sonic activation on early hydration process in 3D concrete printing technology. Constr Build Mater. 2018;169:354-63.
  • 46. Nerella VN, Hempel S, Mechtcherine V. Effects of layer-interface properties on mechanical performance of concrete elements produced by extrusion-based 3D-printing. Constr Build Mater. 2019;205:586-601.
  • 47. Dai S, Zhu H, Zhai M, et al. Stability of steel slag as fine aggregate and its application in 3D printing materials. Constr Build Mater. 2021;299: 123938.
  • 48. Wu H, Cheng Y, Liu W, et al. Effect of the particle size and the debinding process on the density of alumina ceramics fabricated by 3D printing based on stereolithography. Ceram Int. 2016;42:17290-4.
  • 49. Spath S, Drescher P, Seitz H, et al. Impact of particle size of ceramic granule blends on mechanical strength and porosity of 3D printed scafolds. Materials. 2015;8(8):4720-32.
  • 50. Feng L, Wu JN, Song JF, et al. Effect of particle size distribution on the carotenoids release, physicochemical properties and 3D printing characteristics of carrot pulp. Lwt-Food Science And Technology.2021;139: 110576.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8872c93-daf3-4a63-ae7d-7cd7d8aa3a44
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.