Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, three different soft pneumatic actuators (SPA) are designed and directly fabricated through additive manufacturing using thermoplastic polyurethane (TPU) filaments. The equal total inner volume size is used in the three varied designs to compare their effect on the bending response. A material model is selected and implemented according to the uniaxial tensile test parameters. The experimental results obtained from three different soft pneumatic actuators are compared with numerical model results. Especially, the experimentally measured bending forces are compared with the numerical model counterparts. The highest continuous bending deformation is determined among the three different soft pneumatic actuators. Additionally, a new integrated design and manufacturing approach is presented aiming to maximize the potential bending capability of the actuator through additive manufacturing.
Czasopismo
Rocznik
Tom
Strony
391--404
Opis fizyczny
Bibliogr. 23 poz., rys. kolor.
Twórcy
autor
- Mechatronics Engineering Department Istanbul Gedik University Kartal Istanbul, Turkey
autor
- Mechatronics Engineering Department Istanbul Gedik University Kartal Istanbul, Turkey
autor
- BIAS Engineering Inc. Istanbul, Turkey
Bibliografia
- 1. Z. Wang, M. Zhu, S. Kawamura, S. Hirai, Comparison of different soft grippers for lunch box packaging, Robotics and Biomimetics, 4, 1–9, 2017.
- 2. H. Zhang, Y. Wang, M.Y. Wang, J.Y.H. Fuh, A.S. Kumar, Design and analysis of soft grippers for hand rehabilitation, Proceeding of ASME 12th International Manufacturing Science and Engineering Conference, June 4–8, LA, CA, U.S.A., 2017.
- 3. M. Bobak, P. Polygerinos, C. Keplinger, S. Wennstedt, R.F. Shepherd, U. Gupta, J. Shim, K. Bertoldi, C.J. Walsh, G.M. Whiteside, Pneumatic networks for soft robotics that actuate rapidly, Advanced Functional Materials, 24, 2163–2170, 2014.
- 4. B. Gorissen, D. Reynaerts, S. Konishi, K. Yoshida, J. Kim, M.D. Volder, Elastic inflatable actuators for soft robotic applications, Advanced Materials, 29, 1–14, 2017.
- 5. A. Frick, M. Borm, N. Kaoud, J. Kolodziej, J. Neudeck, Microstructure and thermomechanical properties relationship of segmented thermoplatic polyurethane, AIP Conference Proceedings, 1593, 520–525, 2014.
- 6. M.A. Abd, C. Ades, M. Shuqir, M. Holdar, M. Al-Saidi, Impacts of soft robotic actuator geometry on end effector force and displacement, 30th Florida Conference on Recent Advances in Robotics, May 11–12, Florida Atlantic University, Boca Raton, 2017.
- 7. G. Udupa, P. Sreedharan, P.S. Dinesh, D. Kim, Asymmetric bellow flexible pneumatic actuator for miniature robotic soft gripper, Journal of Robotics, 1, 1–11, 2014.
- 8. J. Hughes, U. Culha, F. Giardina, F. Guenther, A. Rosendo, F. Lida, Soft manipulators and grippers: a review, Frontiers in Robotics and AI, 3, 69, 1–12, 2016.
- 9. M. Trolley, R.F. Shepherd, M. Karpelson, N.W. Bartlett, K.C. Galloway, M. Wehner, G.M. Whitesides, R.J. Wood, An untethered jumping soft robot, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), September 14–16, Chicago, 2014.
- 10. Y. Sun, Y.S. Song, J. Paik, Characterization of silicon rubber based soft pneumatic actuators, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), November 3–7, Tokyo, 2013.
- 11. J.H. Low, W.W. Lee, P.M. Khin, N.V. Thankor, S.L. Kukreja, H.L. Ren, C.H.E Yeow, Hybrid tele-manipulation system using a sensorized 3D-printed soft robotic gripper and a soft fabric-based haptic glove, IEEE Robotics and Automation Letters, 2, 2, 2017.
- 12. H. Rodrigue, W. Wang, D. Kim, S. Ahn, Curved shape memory alloy-based soft actuators and application to soft gripper, Composite Structures, 176, 398–406, 2017.
- 13. B.N. Peele, T.J. Wallin, H. Zhao, R.F. Shepherd, 3D printing antagonistic sytems of artificial muscle using projection stereolithography, Bioinspiration & Biomimetics, 10, 1–8, 2015.
- 14. D. Trivedi, C.D. Rahn, W.M. Kier, I.D. Walker, Soft robotics: biological inspiration, state of the art, and future research, Applied Bionics and Biomechanics, 5, 99–117, 2008.
- 15. A. Albu-Schaffer, O. Eiberger, M. Fuchs, M. Grebenstein, Soft robotics: from torque feedback controlled lightweight robots to intrinsically compliant systems, IEEE Robotics & Automation Magazine, 15, 20–30, 2008.
- 16. R. Mutlu, S.K. Yildiz, G. Alici, M. Panhuis, G.M. Spinks, Mechanical stiffness augmentation of a 3D printed soft prosthetic finger, IEEE International Conference on Advanced Intelligent Mechatronics, Banff, Alberta, Canada, July 12–15, 2016.
- 17. A. Przybytek, J. Kucinska-Lipka, H. Janik, Thermoplastic elastomer filaments and their application in 3D printing, Elastomery, 4, 32–39, 2016.
- 18. M. Shahzad, A. Kamran, M.Z. Siddiqui, M. Farhan, Mechanical characterization and FE modelling of a hyperelastic material, Materials Research, 5, 918–924, 2015.
- 19. R.L. Taylor, K.S. Pister, and L.R. Herrmann, On a variational theorem for incompressible and nearly-incompressible orthotropic elasticity, International Journal of Solids Structures, 4, 875–883, 1968.
- 20. L.R. Herrmann, Elasticity equations for incompressible and nearly incompressible materials by a variational theorem, AIAA Journal, 3, 1896–1900, 1965.
- 21. B.S. Shariat , Q. Meng, A.S. Mahmud, Z. Wu, R. Bakhtiari, J. Zhang, F. Motazedian, H. Yang, G. Rio, T. Nam, Y. Liu, Functionally graded shape memory alloys: Design, fabrication and experimental evaluation, Materials and Design, 124, 225–237, 2017.
- 22. R. Behrens, M. Poggendorf, E. Schulenburg, N. Elkmann, An Elephant’s Trunk Inspired Robotic Arm – Trajectory Determination and Control, 7th German Conference on Robotics, Proceedings of Robotik, Munich, 2012.
- 23. S. Kut, G. Ryzinska, B. Niedzialek, Numerical analysis and experimental verification of elastomer bending process with different material models, Open Engineering, 6, 228–234, 2016.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8861df9-315a-43e7-905d-c255a1125cfb