PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Formation of the Quality Indicators of Hemp (Cannabis sativa L.) Seeds Sown under Organic Growing Technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The oil content of hemp seeds is controlled by the genotype and in the conducted studies did not depend on the growing technology; however, this factor had a synergistic effect with others. The protein content of hemp seeds during the years of research did not depend on weather conditions. Like other quality indicators, it had a slight variation, which indicates the significant role of the genetic characteristics of the varieties. On average, over the years of research, the protein content of the variants grown according to conventional technology was 25.2%, and according to transitional technology, it was 0.03% higher, which was within the limits of statistical error. The organic technology ensured the protein content at the level of 25.3%, and the use of the BioStymix-Niva microbial biodegrader - biodestructor contributed to the further growth of the indicator to 25.4%. The oil content of hemp seeds is not limited by other important characteristics, such as the yield of the hemp stems or the fiber content. Only the Glyana variety showed inverse correlations with plant height, hemp stems and seed productivity, they were of medium strength (r = -0.60 – -0.43). In the Zolotoniski 15 variety, only one inverse relationship was recorded, i.e. plant height (r = -0.57). No correlation was established between protein content and oil content in seeds. Correlations may change depending on other factors of cultivation, including weather conditions, elements of technology, etc., but the evaluation of varieties for cultivation according to these characteristics can significantly increase the efficiency of the production of cannabis products.
Słowa kluczowe
Rocznik
Strony
218--227
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agrarian University, 1/3, Skovorody, St., Poltava, 36003, Ukraine
  • Poltava State Agricultural Experimental Station named after M. I. Vavilov, Institute of Pig Breeding and Agro-Industrial Production, National Academy of Agrarian Sciences of Ukraine, 86, Shvedska St., Poltava, 36014, Ukraine
autor
  • Bila Tserkva National Agrarian University, 8/1, Cathedral Square, St., Bila Tserkva, Kyiv region, 09117, Ukraine
  • State Biotechnological University, 44 Alchevskih, St., Kharkov, 61000, Ukraine
Bibliografia
  • 1. Adamovics A., Ivanovs S., Stramkale V. 2016. Investigations about the impact of norms of the fertilisers and cultivars upon the crop capacity biomass of industrial hemp. Agronomy Research, 14(3), 641–649. https://doi.org/10.15159/AR.17.002
  • 2. Amaducci S., Errani M., Venturi G. 2002. Plant population effects on fibre hemp morphology and production. Journal of Industrial Hemp, 7(2), 33–60. https://doi.org/10.1300/J237v07n02_04
  • 3. Amaducci S., Scordia D., Liu F.H., Zhang Q., Guo H., Testa G., Cosentino S.L. 2015. Key cultivation techniques for hemp in Europe and China. Industrial Crops and Products, 68, 2–16. https://doi.org/10.1016/j.indcrop.2014.06.041
  • 4. Aubin M.P., Seguin P., Vanasse A., Tremblay G.F., Mustafa A.F., Charron J.-B. 2016. Industrial hemp response to nitrogen, phosphorus, and potassium fertilization. Crop, Forage & Turfgrass Management, 1(1), 1–10. https://doi.org/10.2134/cftm2015.0159
  • 5. Baldini M., Ferfuia C., Zuliani F., Danuso F. 2020. Suitability assessment of different hemp (Cannabis sativa L.) varieties to the cultivation environment. Industrial crops and products, 143, 111860. https://doi.org/10.1016/j.indcrop.2019.111860
  • 6. Blasi F., Tringaniello C., Verducci G., Cossignani L. 2022. Bioactive minor components of Italian and Extra-European hemp seed oils. LWT, 158, 113167. https://doi.org/10.1016/j.lwt.2022.113167.
  • 7. Callaway J.C. 2004. Hempseed as a nutritional resource: An overview. Euphytica, 140, 65–72. https://doi.org/10.1007/s10681-004-4811-6
  • 8. Caplan D., Dixon M., Zheng Y. 2017. Optimal rate of organic fertilizer during the vegetative-stage for cannabis grown in two coir-based substrates. HortScience, 52(9), 1307–1312. https://doi.org/10.21273/HORTSCI11903-17
  • 9. Carus M., Karst S., Kauffmann A., Hobson J., Bertucelli S. 2013. The European hemp industry: cultivation, processing and applications for fibres, shives, seeds and flowers. European Industrial Hemp, 10, 1–9.
  • 10. Da Porto C., Decorti D., Natolino A. 2015. Potential oil yield, fatty acid composition, and oxidation stability of the hempseed oil from four Cannabis sativa L. Cultivars. Journal of Dietary Supplements, 12(1), 1–10. https://doi.org/10.3109/19390211.2014.887601
  • 11. Deferne J.L., Pate D.W. 1996. Hemp seed oil: A source of valuable essential fatty acids. Journal of the International Hemp Association, 3(1), 4–7.
  • 12. Dingha B., Sandler L., Bhowmik A., Akotsen-Mensah C., Jackai L., Gibson K., Turco R. 2019. Industrial hemp knowledge and interest among North Carolina organic farmers in the United States. Sustainability, 11(9), 2691. https://doi.org/10.3390/su11092691
  • 13. Finnan J., Burke B. 2013. Nitrogen fertilization to optimize the greenhouse gas balance of hemp crops grown for biomass. GCB Bioenergy, 5(6), 701–712. https://doi.org/10.1111/gcbb.12045
  • 14. Frassinetti S., Moccia E., Caltavuturo L., Gabriele M., Longo V., Bellani L., Giorgi G., Giorgetti L. 2018. Nutraceutical potential of hemp (Cannabis sativa L.) seeds and sprouts. Food Chemistry, 262(1), 56–66. https://doi.org/10.1016/j.foodchem.2018.04.078
  • 15. Galasso I., Russo R., Mapelli S., Ponzoni E., Brambilla I.M., Battelli G., Reggiani R. 2016. Variability in seed traits in a collection of Cannabis sativa L. genotypes. Frontiers in Plant Science, 7, 688. https://doi.org/10.3389/fpls.2076.00688
  • 16. Golimowski W., Teleszko M., Marcinkowski D., Kmiecik D., Grygier A., Kwaśnica A. 2022. Quality of oil pressed from hemp seed varieties: ‘Earlina 8FC’, ‘Secuieni Jubileu’ and ‘Finola’. Molecules, 27(1), 3171. https://doi.org/10.3390/molecules27103171
  • 17. Jonaitienė V., Jankauskienė Z., Stuogė I. 2016. Hemp cultivation opportunities and perspectives in Lithuania. Natural fibres: advances in science and technology towards industrial applications. RILEM, 12, 407–414. https://doi.org/10.1007/978-94-017-7515-1_32
  • 18. Kakabouki I., Kousta A., Folina A., Karydogianni S., Zisi C., Kouneli V., Papastylianou P. 2021. Effect of Fertilization with Urea and Inhibitors on Growth, Yield and CBD Concentration of Hemp (Cannabis sativa L.) Sustainability, 13(4), 2157. https://doi.org/10.3390/su13042157
  • 19. Kladar N., Čonić B.S., Božin B., Torović L. 2021. European hemp-based food products – Health concerning cannabinoids exposure assessment. Food Control, 129, 108233. https://doi.org/10.1016/j.foodcont.2021.108233
  • 20. Kousta A., Papastylianou P., Travlos I., Mavroeidis A., Kakabouki I. 2023. Effect of Fertilization and Weed Management Practices on Weed Diversity and Hemp Agronomic Performance. Agronomy, 13(4), 1060. https://doi.org/10.3390/agronomy13041060
  • 21. Laleh S., Jami Al-ahmadi M., Parsa S. 2021. Response of hemp (Cannabis sativa L.) to integrated application of chemical and manure fertilizers. Acta agriculturae Slovenica, 117(2), 1–15. http://dx.doi.org/10.14720/aas.2021.117.2.1819
  • 22. Legros S., Picault S., Cerruti N. 2013. Factors affecting the yield of industrial hemp – Experimental results from France. In P. Bouloc (Ed.). Hemp: Industrial production and use, 72–97. https://doi.org/10.1079/9781845937935.0072
  • 23. Łochyńska M.E., Frankowski J. 2019. Impact of Silkworm Excrement Organic Fertilizer on Hemp Biomass Yield and Composition. Journal of Ecological Engineering, 20(10), 63–71. https://doi.org/10.12911/22998993/112858
  • 24. Marzocchi S., Caboni M. 2020. Effect of harvesting time on hemp (Cannabis sativa L.) seed oil lipid composition. Ital. J. Food Sci., 32(4), 1018–1029. https://doi.org/10.14674/IJFS.1898
  • 25. Mikulec A., Kowalski S., Sabat R., Skoczylas Ł., Tabaszewska M., Wywrocka-Gurgul A. 2019. Hemp flour as a valuable component for enriching physico-chemical and antioxidant properties of wheat bread. LWT-Food Sci Techn., 102(2), 164–172. https://doi.org/10.1016/j.lwt.2018.12.028
  • 26. Montford S., Small E. 1999. A comparison of the biodiversity friendliness of crops with special reference to hemp (Cannabis sativa L.). Journal of the International Hemp Association, 6, 53–63.
  • 27. Papastylianou P., Kakabouki I., Travlos I. 2018. Effect of nitrogen fertilization on growth and yield of industrial hemp (Cannabis sativa L.). Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46(1), 197–201. https://doi.org/10.15835/nbha46110862
  • 28. Pavlovic R., Panseri S., Giupponi L., Leoni V., Citti C., Cattaneo C., Cavaletto M., Giorgi A. 2019. Phytochemical and ecological analysis of two varieties of hemp (Cannabis sativa L.) grown in a mountain environment of Italian Alps. Frontiers in Plant Science, 10, 01265. https://doi.org/10.3389/fpls.2019.01265
  • 29. Schultz C.J., Lim W.L., Khor S.F., Neumann K.A., Schulz J.M., Ansari O., Skewes M.A., Burton R.A. 2020. Consumer and health-related traits of seed from selected commercial and breeding lines of industrial hemp, Cannabis sativa L. Journal of Agriculture and Food Research, 2, 100025. https://doi.org/10.1016/j.jafr.2020.100025
  • 30. Sova N., Lutsenko M., Korchmaryova A., Andrusevych K. 2018. Research of physical and chemical parameters of the oil obtained from organic and conversion hemp seeds varieties «Hliana”. Ukrainian Food Journal, 7(2), 244–252.
  • 31. Stafecka I., Stramkale V., Stramkalis A., Kroica I., Ivanovs S. 2016. Impact of the agro-environmental factors on the seed yield and yields components productivity of Latvian original hemp. Journal of Research and Applications in Agricultural Engineering, 61(4), 164–167.
  • 32. Švec I., Hrušková M. 2015. Properties and nutritional value of wheat bread enriched by hemp products. Potravinarstvo. 9(1), 304–308. https://doi.org/10.5219/487
  • 33. Tang K., Struik P.C., Yin X., Calzolari D., Musio S., Thouminot C., Bjelková M., Stramkale V., Magagnini G., Amaducci S. 2017. A comprehensive study of planting density and nitrogen fertilization effect on dual-purpose hemp (Cannabis sativa L.) cultivation. Industrial Crops and Products, 107, 427–438. https://doi.org/10.1016/j.indcrop.2017.06.033
  • 34. Tang K., Struik P.C., Yin X., Thouminot C., Bjelková M., Stramkale V., Amaducci S. 2016. Comparing hemp (Cannabis sativa L.) cultivars for dual-purpose production under contrasting environments. Industrial Crops and Products, 87, 33–44. https://doi.org/10.1016/j.indcrop.2016.04.026
  • 35. Vera C.L., Malhi S.S., Raney J.P., Wang Z.H. 2002. The effect of N and P fertilization on growth, seed yield, and quality of industrial hemp in the Parkland region of Saskatchewan. Canadian Journal of Plant Science, 84, 939–947. https://doi.org/10.4141/P04-022
  • 36. Werf H.V.D., Mathussen E.W.J.M., Haverkort A.J. 1996. The potential of hemp (Cannabis sativa L.) for sustainable fibre production: a crop physiological appraisal. Annals of Applied biology, 129(1), 109–123. https://doi.org/10.1111/j.1744-7348.1996.tb05736.x
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8850373-db43-4631-bb0a-1b8c64023d75
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.