Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ti-containing steel weld metals with Al contents of 0.01-0.085% were prepared. The effects of Al contents on the inclusions evolution were investigated by means of thermodynamic calculations coupled with electron probe micro-analyses and transmission electron microscopy. The results show that the inclusions in the 0.01% Al weld metal are mainly composed of ilmenite withsome amounts of (Mn-Si-Al)-oxide and titanial_spinel. When Al content is increased up to 0.035%, a more amount of corundum and a small amount of pseudobrookite are formed. In 0.085% Al weld metal, the (Mn-Si-Al)-oxide disappears completely, and the inclusions contain a substantial amount of corundum, in addition to a minimal amount of pseudobrookite. Ti3O5, MnTi2O4 and MnTiO3 are the primary constituents of pseudobrookite, titanial_spinel and ilmenite, respectively. Titanial_spinel and ilmenite have higher amounts of Mn, but lower Ti levels compared with pseudobrookite. In the case of presence of a considerable amountsof titanial_spinel and ilmenite, Mn-depleted zone is formed in matrix around the inclusions.
Wydawca
Czasopismo
Rocznik
Tom
Strony
171--180
Opis fizyczny
Bibliogr. 16 poz., fot., rys., tab.
Twórcy
autor
- Liaoning Shihua University, College of Mechanical Engineering, Fushun 113001, China
autor
- Liaoning Shihua University, College of Mechanical Engineering, Fushun 113001, China
Bibliografia
- [1] A. Takada, Y.I. Komizo, H. Terasaki, T. Yokota, K. Oi, K. Yasuda, Welding Int. 29 (4), 254-261 (2015). doi: 10.1080/09507116.2014.921042.
- [2] Y.B. Kang, H.G. Lee, ISIJ Int. 50 (4), 501-508 (2010). doi: 10.2355/isijinternational.50.501.
- [3] Y.J. Kang, K.T. Han, J. H. Park, C.H. Lee, Metall. Mater. Trans. A 45, 4753-4757 (2014). doi: 10.1007/s11661-014-2470-3.
- [4] Y.J. Kang, S.H. Jeong, J.H. Kang, C.H. Lee, Metall. Mater. Trans. A 47, 2842-2854 (2016). doi: 10.1007/s11661-016-3456-0.
- [5] Y.J. Kang, J.H. Jang, J.H. Park, C.H. Lee, Met. Mater. Int.20 (1), 119-127 (2014). doi: 10.1007/s12540-014-1013-1.
- [6] X.D. Zou, J.C. Sun, D.P. Zhao, H. Matsuura, C. Wang, J. Iron Steel Res. Int. 25 (2), 164-172 (2018). doi: 10.1007/s42243-018-0022-6.
- [7] X.D. Zou, D.P. Zhao, J.C. Sun, C. Wang, H. Matsuura, Metall. Mater. Trans. B 49 (2), 481-489 (2018). doi: 10.1007/s11663-017-1163-x.
- [8] T.S. Zhang, C.J. Liu, M.F. Jiang, Metall. Mater. Trans. B 47, 2253-2262 (2016). doi: 10.1007/s11663-016-0706-x.
- [9] B.X. Wang, X.H. Liu, G.D Wang, Metall. Mater. Trans. A 49 (6), 2124-2138 (2018). doi:10.1007/s11661-018-4570-y.
- [10] Q.S. Zhang, Y. Min, H.S. Xu, C.J. Liu, ISIJ Int. 58 (7), 1250-1256 (2018). doi: 10.2355/isijinternational.isijint-2018-105.
- [11] J.Y. Li, G.G. Cheng, Q. Ruan, J.X. Pan, X.R. Chen, ISIJ Int. 58 (12), 2280-2287 (2018). doi: 10.2355/isijinternational.ISI-JINT-2018-332.
- [12] T.S. Zhang, C.J. Liu, J.Y. Qiu, X.B. Li, M.F. Jiang, ISIJ Int. 57 (2), 314-321 (2017). doi: 10.2355/isijinternational.ISIJINT2016-417.
- [13] Y.J. Kang, K.T. Han, J.H. Park, C.H. Lee, Metall. Mater. Trans. A 46, 3581-3591 (2015). doi: 10.1007/s11661-015-2958-5.
- [14] H. Mitsutaka, I. Kimihisa, Thermodynamic data for steelmaking, Tohoku University Press, Japan, Sendai, 2010.
- [15] Y.B Kang, S.H. Jung, ISIJ Int. 58 (8), 1371-1382 (2018). doi: 10.2355/isijinternational.ISIJINT-2018-198.
- [16] K.C. Hsieh, S.S. Babu, J.M. Vitek, S.A. David, Mater. Sci. Eng. A 215, 84-91 (1996). doi: 10.1016/0921-5093(96)10370-1.
Uwagi
1. This work was financially supported by a Project of Education Department of Liaoning Province (grant no. L2016132).
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8835618-6a6a-48dd-aaa0-b4a5fc4ebd9b