Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The paper presents the method of approximating curves with a single segment of the B-Spline and Bézier curves. The method for determining a single curve segment using the optimization methods in the CATIA environment is shown. The algorithms of simulated annealing and design of experiment are used for optimization. For the same purpose, a new original procedure for determining the distance between the given curves using explicit parameters in the CATIA environment was also used. This approximation of the cyclic curves results in the curve oscillation as shown in the examples. The results show that the approximation method with Bézier curve using control points as “free” points can be applied to obtain the best results of approximation.
Wydawca
Rocznik
Tom
Strony
84--92
Opis fizyczny
Bibliogr. 10 poz., rys., tab., wykr.
Twórcy
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszów, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszów, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszów, Poland
autor
- Faculty of Mechanical Engineering and Aeronautics, Rzeszow University of Technology, Rzeszów, Poland
Bibliografia
- [1] G. Farin: Curves and surfaces for computer aided geometric design: a practical guide. 3rd ed. Academic Press, Boston, MA 1993.
- [2] H. Prautzsch, W. Boehm, M. Paluszny: Bézier and B-spline techniques. Springer-Verlag, Heidelberg 2002.
- [3] H.N. Fittera, A.B. Pandey, D.D. Patel, J.M. Mistry: A review on approaches for handling Bézier curves in CAD for manufacturing. Procedia Eng., 97(2014), 1155-1166.
- [4] F. Higuchi, S. Gofuku, T. Maekawa, H. Mukundan, N.M. Patrikalakis: Approximation of involute curves for CAD-system processing. Eng. Comput., 23(2007), 207-214.
- [5] Y.J. Ahn, C. Hoffmann, Y.S. Kim: Curvature continuous offset approximation based on circle approximation using quadratic Bézier biarcs. Comput.-Aided Des., 43(2011), 1011-1017.
- [6] S.H. Kim, Y.J. Ahn: An approximation of circular arcs by quartic Bézier curves. Comput.-Aided Des., 39(2007), 490-493.
- [7] J. Sánchez-Reyes: Bézier representation of epitrochoids and hypotrochoids. Comput.-Aided Des., 31(1999), 747-750.
- [8] M. Batsch, T. Markowski, S. Legutko, G.M. Krolczyk: Measurement and mathematical model of convexo-concave Novikov gear mesh. Measurement, 125(2018), 516-525.
- [9] S. Babu, K.M. Abubacker: Development of involute profiled spur gear model with excel spreadsheet, solidworks and CAD technique. Int. J. Mech. Eng., 5(2018), 5-11.
- [10] G.G. Rey, G.B. Gordillo: Parametric geometric modeling of a spur gear using solidworks. Gear Solutions., 15(2017), 30-36.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b87d4579-8972-48d5-be9f-7a9c5ee4f341