Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Trephination is one of the basic operations of keratoplasty, and the biomechanical mechanism of the operation can be revealed based on three-dimensional modeling and simulation of trephine cutting cornea. Methods: Based on the analysis of the physical and biomechanical characteristics of corneal trephination, a three-dimensional numerical model of corneal trephination is built, where the cornea can be simplified to two layers structure including stroma and epithelium, and the trephine cuts the cornea under the vertical motion load and the rotational motion load. A three-dimensional failure criterion of corneal material is proposed based on the yield strength theory. On this basis, trephination simulation is carried out, and the units of corneal material are removed from the model when they meet the defined failure criterion. Results: Under the given parameters including the velocity, the angle and the angular velocity, the trephine force curves, include the linear cutting force and the rotary cutting force are obtained, and show the change of the forces with displacement during the process of trephination simulation. The maps of the equivalent stress show the destruction and deformation of the cornea. Then, the experiment of robotic trephination is carried out under the same parameters and the effectiveness of the simulation is evaluated. Conclusions: Based on mechanics theory and finite element method, the process of trephine cutting cornea has been reproduced, and the interaction mechanism is revealed, which lays the foundation for the development of real-time simulation and virtual system of the corneal surgery.
Czasopismo
Rocznik
Tom
Strony
23--33
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wykr.
Twórcy
autor
- School of Electromechanical Engineering, Beijing Information Science and Technology University, Beijing, China
- Key Laboratory of Rehabilitation Aids Technology and System of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, China
autor
- School of Electromechanical Engineering, Beijing Information Science and Technology University, Beijing, China
autor
- Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Capital Medical University, Beijing, China
autor
- College of Mechanical Engineering and Applied Electronics Technology, Beijing University of Technology, Beijing, China
autor
- School of Electromechanical Engineering, Beijing Information Science and Technology University, Beijing, China
autor
- School of Mechanical Engineering and Automation, Beihang University, Beijing, China
Bibliografia
- [1] ABOLHASSANI N., PATEL R., MOALLEM M., Needle insertion into soft tissue: a survey, Med. Eng. Phys., 2007, 29(4), 413–431.
- [2] ALMAMOUN A., Influence of different keratoplasty techniques on the biomechanical properties of the cornea, Acta Ophthalmol., 2013, 91(7), e567–572.
- [3] ANDERSON K., EL-SHEIKH A., NEWSON T., Application of structural analysis to the mechanical behaviour of the cornea, J. R. Soc. Interface, 2004, 1(1), 3–15.
- [4] BASSAN H.S., PATEL R.V., MOALLEM M., A novel manipulator for percutaneous needle insertion: design and experimentation, IEEE-ASME T. Mech., 2009, 14(6), 746–761.
- [5] BOURNE W.M., Morphologic and functional evaluation of the endothelium of transplanted human corneas, Trans. Am. Ophthalmol. Soc., 1983, 81, 403–450.
- [6] DI-MAIO S.P., SALCUDEAN S.E., Needle insertion modeling and simulation, IEEE Trans. Robot. Autom., 2003, 19(5), 864–875.
- [7] HOLZAPFEL G.A., Nonlinear solid mechanics: a continuum approach for engineering, Meccanica, 2000, 37(4–5), 489–490.
- [8] IQBAL M.A., CHAKRABARTI A., BENIWAL S., GUPTA N.K., 3D numerical simulations of sharp nosed projectile impact on ductile targets, Int. J. Impact. Eng., 2010, 37(2), 185–195.
- [9] JAFARINASAB M.R., FEIZI S., JAVADI M.A., HASHEMLOO A., Graft biomechanical properties after penetrating keratoplasty versus deep anterior lamellar keratoplasty, Curr. Eye Res., 2011, 36(5), 417–421.
- [10] KORFF A., FOLLMANN A., FÜRTJES T., HABOR D., Concept and evaluation of a synergistic controlled robotic instrument for trepanation in neurosurgery, Mach. Vision Appl., 2011, 21(2), 163–176.
- [11] LIU X., WANG L., WANG C., SUN G., LIU S., FAN Y., Mechanism of traumatic retinal detachment in blunt impact: a finite element study, J. Biomech., 2013, 46(7), 1321–1327.
- [12] MAJID M., MEYER J.J., KANG P.C., A comparison of three methods for trephining donor corneal buttons: endothelial cell loss and microscopic ultrastructural evaluation, Curr. Eye Res., 2009, 34(11), 939–944.
- [13] NIELS E., JESPER H., Corneal thickness: measurement and implications, Exp. Eye Res., 2004, 78(3), 543–548.
- [14] HU Y., LI D., YANG Y., SUN X., Integration of microsensor for microsurgery robot’s end-effector, J. B. Univ. Aeronaut. Astronaut., 2007, 2(2), 205–209.
- [15] HOFFART L., PROUST H., MATONTI F., RIDINGS B., CONRATH J., Short-term results of penetrating keratoplasty performed with the femtec femtosecond laser, Am. J. Ophthalmol., 2008, 146(1), 50–55.e1.
- [16] PINSKY P.M., HEIDE D.V.D., CHERNYAK D., Computational modeling of mechanical anisotropy in the cornea and sclera, J. Cataract. Refr. Surg., 2005, 31(1), 136–145.
- [17] RAVALI G., MANIVANNAN M., Haptic feedback in needle insertion modeling and simulation: review, IEEE Rev. Biomed. Eng., 2017, pp(99), 1–1.
- [18] ROBERTS C., The cornea is not a piece of plastic, J. Refract. Surg., 2000, 16(4), 407.
- [19] SOONG H.K, MALTA J.B., Femtosecond lasers in ophthfalmology, Am. J. Ophthalmol., 2009, 147(2), 189–197.e2.
- [20] STUDER H., LARREA X., RIEDWYL H., BÜCHLER P., Biomechanical model of human cornea based on stromal microstructure, J. Biomech., 2009, 43(5), 836–842.
- [21] STUDER H.P., RIEDWYL H., AMSTUTZ C.A., HANSON J.V.M., BÜCHLER P., Patient-specific finite-element simulation of the human cornea: a clinical validation study on cataract surgery, J. Biomech., 2012, 46(16), 751–758.
- [22] SU P., DENG S., HUANG L., SONG Y., LIU X., YANG Y., Analysis and evaluation of a robotic trephination in penetrating keratoplasty, J. Med. Devices, 2016, 10(2).
- [23] SU P., YANG Y., XIAO J., SONG Y., Corneal hyperviscoelastic model: derivations, experiments, and simulations, Acta Bioeng. Biomech., 2015, 17(2), 73–84.
- [24] SU P., YANG Y., ZHANG L., HUANG L., Biomechanical simulation of needle insertion into cornea based on distortion energy failure criterion, Acta Bioeng. Biomech., 2016, 18(1), 65–75.
- [25] SZENTMÁRY N., LANGENBUCHER A., KUS M.M., NAUMANN G.O., SEITZ B., Elliptical nonmechanical corneal trephination: intra- operative complications and long-term outcome of 42 consecutive excimer laser penetrating keratoplasties, Cornea, 2007, 26(4), 414–420.
- [26] TAYLOR R., DU X., PROOPS D., REID A., COULSON C., BRETT P.N., A sensory-guided surgical micro-drill, Archive P. I. Mech. Eng. G.-J. Aer. 1989–1996 (Vols. 203–210), 2010, 224(7), 1531–1537.
- [27] TAYLOR R.H., STOIANOVICI D., Medical robotics in computer-integrated surgery, IEEE Trans. Rob. Autom., 2003, 19(5), 765–781.
- [28] YANG Y.F., CHEN D.F., ZENG Y.J., ZHANG B., Simulation of corneal tissue mechanical deformation based on the finite element method, J. B. Univ. Technol., 2008, 34(1), 85–89.
- [29] YANG Y., XU C., DENG S., XIAO J., Insertion force in manual and robotic corneal suturing, Int. J. Med. Robot. Comp., 2012, 8(1), 25–33.
- [30] YAN J., STRENKOWSKI J.S., A finite element analysis of orthogonal rubber cutting, J. Mater. Process. Tech., 2006, 174(1), 102–108.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8754899-58e5-49a0-a5c9-6f3e9b3b8781