Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The article presents the results of experimental research and a mathematical analysis of the energy efficiency of a PCM-modified transparent partition. The study was carried out during the summer season and heating season for 5 months under temperate climate conditions in Rzeszów (Poland). The solution under investigation allows for short-term storage of heat within a building window, owing to the high value of melting/freezing enthalpy of approx. 185 J/g, and the phase change material (PCM) applied. The research was conducted in parallel over two identical windows, with only one of them being modernised with a phase change thermal storage unit. The obtained results showed the possibility of improving the thermal balance of the window by 9.99%, and a more favourable adjustment of gains from solar radiation to the profile of heat demand of the adjacent room by 15.02%, compared to the reference window. The obtained results also allowed the numerical model describing the non-stationary heat exchange within the phase change material to be verified, using the solution of a Stefan problem. The obtained model was created using the equations of finite difference method in the Matlab environment. The verified model is highly compatible with empirical quantities, and constitutes a useful tool for simulating the distribution of heat storage in a PCM storage unit over time. This allows the heat gains resulting from the use of the tested storage units in the building windows to be estimated.
Czasopismo
Rocznik
Tom
Strony
201--211
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
- Rzeszow University of Technology, The Faculty of Civil and Environmental Engineering and Architecture, 35-959 Rzeszów, ul. Poznańska 2, Poland
Bibliografia
- 1. Boussab L., Foufa A., Makhlouf S., Lefebvre G. and Royon L. 2018. Elaboration and properties of a composite bio-based PCM for an application in building envelopes. Construction and Building Materials. 185, 156–165. doi:10.1016/j.conbuildmat.2018.07.098
- 2. Cascone Y., Capozzoli A. and Perino M. 2018. Optimisation analysis of PCM-enhanced opaque building envelope components for the energy retrofitting of office buildings in Mediterranean climates. Applied Energy. 211, 929–953. doi:10.1016/j.apenergy.2017.11.081
- 3. Chen X., Li X., Xia X., Sun C. and Liu R. 2019. Thermal Performance of a PCM-Based Thermal Energy Storage with Metal Foam Enhancement. Energies, 12, 3275. doi:10.3390/en12173275
- 4. Constantin L., Dragomir-Stanciu D. and Crismaru I. V. 2015. Optimization of Heat Exchange in a Heat Accumulator with Latent Heat Storage. Procedia Techology. 19, 737–741. doi.org/10.1016/j.protcy.2015.02.104
- 5. https://www.rubitherm.eu/index.php/produktkategorie/organische-pcm-rt {access 23. 12. 2019}
- 6. Kalinović M. S., Djoković M. J. and Nikolić R. R. 2017. Influence of windows geometrical parameters on calculations of the heat conduction coefficient. Procedia Engineering. 192, 404–409. doi.org/10.1016/j.proeng.2017.06.070
- 7. Kang H., Cho I., Park H. and Kim Y. 2011. Heat transfer characteristics of accumulator heat exchangers under various geometric and operating conditions. International Journal of Refrigeration. 34, 1077–1084. 10.1016/j.ijrefrig.2011.02.009
- 8. Kisilewicz T. 2009. A simple partition simulation model with transparent insulation, Technical Journal of the Cracow University of Technology, Z5-B/2009 87–94 [in Polisch]
- 9. Li S., Zou K., Sun G. and Zhang X. 2018. Simulation research on the dynamic thermal performance of a novel tripleglazed window filled with PCM. Sustainable Cities and Society. 40, 266–273. doi.org/10.1016/j.scs.2018.01.020
- 10. Lia D., Zhanga C., Lia Q., Liua C., Arıcıb M. and Wua Y. 2020. Thermal performance evaluation of glass window combining silica aerogels and phase change materials for cold climate of China. Applied. Thermal. Engineering. 165, 114547. doi: 10.1016/j.applthermaleng.2019.114547
- 11. Lichołai L. and Musiał M.2018. Use of copolymers of vinyl acetate and alkyl acrylates for coating organic phase change materials. Przemysł Chemiczny. 97/11, 1852–1854. doi:10.15199/62.2018.11.7
- 12. Lissner M., Tissot J., Leducq D. D., Azzouz K. and Fournaison L. 2016. Performance study of latent heat accumulators: Numerical and experimental study. Applied. Thermal. Engineering. 102, 604–614. doi.org/10.1016/j.applthermaleng.2016.03.011
- 13. Liu C., Wu Y., Bian J., Li D. and Liu X. 2018. Influence of PCM design parameters on thermal and optical performance of multi-layer glazed roof. Applied Energy. 212, 151–161. doi: 10.1016/j.apenergy.2017.12.012
- 14. Mofijur M., Mahlia T. M. I., Silitonga A. S., Ong H. C., Silakhori M., Hasan M. H., Putra N. and Rahman S. M. A. 2019. Phase Change Materials (PCM) for Solar Energy Usages and Storage: An Overview. Energies. 12, 3167. doi:10.3390/en12163167
- 15. Musiał M. 2019. Untersuchung des Einflusses der Geometrie von PCM‐Elementen auf ihre Wärmespeichereffizienz. Bauphysik, 6/2019, 324–331 doi:10.1002/bapi.201900026
- 16. Musiał M. 2018. Use of organic aliphatic esters to obtain an energy – efficient eutectic mixture. Przemysł. Chemiczny. 97/11, 1855–1865. doi:10.15199/62.2018.11.8
- 17. Smolec W.2000. Photothermal solar energy conversion, PWN, Warsaw [in polisch]
- 18. Souayfan F., Biwol H. P. and Fardounb F. 2018. Thermal behavior of a translucent super insulated latent heat energy storage wall in summertime. Applied Energy. 217, 390–408. doi.org/10.1016/j.apenergy.2018.02.119
- 19. Szyszka J. and Starakiewicz A. 2018. A quasi-box window concept to improve the thermal-insulation property of old windows – case study. E3S Web of Conference SOLINA 2018. 49, 00115 doi: 10.1051/e3sconf/20184900115
- 20. Tenpierik M., Wattez Y., Turrin M., Cosmatu T. and Tsafou S. 2019. Temperature control in (Translucent) phase change materials applied in facades: A numerical study. Energies, 12, 3286. doi:10.3390/en12173286
- 21. Vogel A. J. 2006. Organic preparation, Warsaw. Scientific and technical publishing house. [in polisch].
- 22. Zhang W., Lu L. and Xu X. 2019. Thermal and daylighting performance of glass window using a newly developed transparent heat insulated coating. Energy Procedia. 158, 1080–1085. doi.org/10.1016/j.egypro.2019.01.262
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8716630-3188-4207-a060-9161a6319c09