PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spatiotemporal Distribution of the Impact of Urban Development on Air Pollution

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study applies China’s air pollution and urban development data from 2007 to 2021, and the temporally weighted regression (GTWR) model to analyze the spatiotemporal distribution characteristics of air pollution influencing factors. It was found that the temporal evolution of air pollution in different regions is highly consistent but its degree varies with the pollution severity. The impact of urban development on air pollution has significant spatiotemporal heterogeneity. Overall, urban green space area (UGSA), urban population density (UPD), and domestic waste removal volume (DWRV) have positive impacts, while urbanization rate (UR), per capita disposable income of urban residents (URI), and public vehicles per every 10 000 people (PTV) have negative impacts. The impact of USGA, UR, and URI is mainly visible in western provinces, the impact of UPD in northeast provinces, the impact of DWRV in eastern and central provinces, and the impact of PTV in eastern provinces.
Rocznik
Strony
21--35
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • School of Information Management, Minnan University of Science and Technology, Quanzhou, China
autor
  • School of Information Engineering, Quanzhou Ocean Institute, Quanzhou, China
autor
  • School of Information Management, Minnan University of Science and Technology, Quanzhou, China
autor
  • School of Information Management, Minnan University of Science and Technology, Quanzhou, China
Bibliografia
  • [1] ZHOU Z., CHEN Y., SONG P., DING T., China’s urban air quality evaluation with streaming data. A DEA window analysis, Sci. Total Environ., 2022, 727, 138213. DOI: 10.1016/j.scitotenv.2020.138213.
  • [2] FENG Y., WANG X., DU W., LIU J., Effects of air pollution control on urban development quality in Chinese cities based on spatial Durbin model, Int. J. Environ. Res. Pub. Health, 2018, 15 (12), 2822. DOI: 10.3390/ijerph15122822.
  • [3] OU J., PIROZZI C.S., HORNE B.D., HANSON H.A., KIRCHHOFF A.C., MITCHELL L.E., COLEMAN N.C., ARDEN POPE C.A.P., Historic and modern air pollution studies conducted in Utah, Atmosphere, 2020, 11 (10), 1094. DOI: 10.3390/atmos11101094.
  • [4] ZHOU A., LI J., Air pollution and income distribution: Evidence from Chinese provincial panel data, Environ. Sci. Pollut. Res., 2021, 28 (7), 8392–8406. DOI: 10.1007/s11356-020-11224-x.
  • [5] GUO L., HAN X., LI Y., The smog that hovers. Air pollution and asset prices, Financ. Res. Lett., 2023, 53, 103633. DOI: 10.1016/j.frl.2023.103633.
  • [6] CHEN H., ZENG W., LI J., MA T., LIU S., LEI G., GAISER T., SRIVASTAVA A.K., Impact of air pollution on maize and wheat production, Ecol. Chem. Eng. S, 2022, 29 (2), 237–256. DOI: 10.2478/eces-2022-0018.
  • [7] ZENG S., WU L., GUO Z., Does air pollution affect prosocial behaviour? Front. Psychol., 2022, 13, 752096. DOI: 10.3389/fpsyg.2022.752096.
  • [8] GUO B., WANG Y., FENG Y., LIANG C., TANG L., YAO X., HU F., The effects of environmental tax reform on urban air pollution. A quasi-natural experiment based on the environmental protection tax law, Front. Public Health, 2022, 10, 967524. DOI: 10.3389/fpubh.2022.967524.
  • [9] CAO D., RAMIREZ C.D., Air Pollution, Government Pollution Regulation, and Industrial Production in China, J. Syst. Sci. Complex., 2020, 33 (4), 1064–1079. DOI: 10.1007/s11424-020-9128-6.
  • [10] LUTHRA A., CHATURVEDI B., MUKHOPADHYAY S., Air pollution, waste management and livelihoods. Pat-terns of cooking fuel use among waste picker households in Delhi, Geogr. Rev., 2023, 113 (2), 229–245. DOI: 10.1080/00167428.2021.1941016.
  • [11] ZHANG Y., SHI T., WANG A.-J., HUANG Q., Air pollution, health shocks and labor mobility, Int. J. Environ. Res. Public Health, 2022, 19 (3), 1382. DOI: 10.3390/ijerph19031382.
  • [12] ALYOUSIFI Y., KIRAL E., UZUN B., IBRAHIM K., New application of fuzzy Markov chain modeling for air pollution index estimation, Water Air Soil Pollut., 2021, 232 (7), 276. DOI: 10.1007/s11270-021-05172-6.
  • [13] KOO B., KANG S.C., THORSTEINSSON T., CRUZ A.M., Air pollution awareness and risk perception in ger areas of Ulaanbaatar, Int. J. Environ. Pollut., 2022, 71 (3/4), 240–261. DOI: 10.1504/IJEP.2022.132932.
  • [14] AUNAN K., HANSEN M.H., LIU Z., WANG S., The hidden hazard of household air pollution in rural China, Environ. Sci. Pol., 2019, 93, 27–33. DOI: 10.1016/j.envsci.2018.12.004.
  • [15] GUO Y., LU Q., WANG S., WANG Q., Analysis of air quality spatial spillover effect caused by transportation infrastructure, Transp. Res. D: Transp. Environ., 2022, 108, 103325. DOI: 10.1016/j.trd.2022.103325.
  • [16] ZENG J., WEN Y., BI C., FEIOCK R., Effect of tourism development on urban air pollution in China. The moderating role of tourism infrastructure, J. Clean. Prod., 2021, 280, 124397. DOI: 10.1016/j.jclepro. 2020.124397.
  • [17] LU J., LI B., LI H., AL-BARAKANI A., Expansion of city scale, traffic modes, traffic congestion, and air pollution, Cities, 2021, 108, 102974. DOI: 10.1016/j.cities.2020.102974.
  • [18] ZHANG Y., WANG L., TANG Z., ZHANG K., WANG T., Spatial effects of urban expansion on air pollution and eco-efficiency. Evidence from multisource remote sensing and statistical data in China, J. Clean. Prod., 2022, 367, 132973. DOI: 10.1016/j.jclepro.2022.132973.
  • [19] LIU Y., SU H., GU J., TIAN Z., LI K., Quantifying multiple effects of industrial patterns on air quality. Evidence from 284 prefecture-level cities in China, Ecol. Indic., 2022, 145, 109722. DOI: 10.1016 /j.ecolind.2022.109722.
  • [20] YUAN M., YAN M., SHAN Z., Is compact urban form good for air quality? A case study from China based on hourly smartphone data, Land, 2021, 10 (5), 504. DOI: 10.3390/land10050504.
  • [21] DONG S., REN G., XUE Y., LIU K., How does green innovation affect air pollution? An analysis of 282 Chinese cities, Atmos. Pollut. Res., 2023, 14 (9), 101863. DOI: 10.1016/j.apr.2023.101863.
  • [22] WEI L., LI X., Analysis of spatial dynamic correlation and influencing factors of atmospheric pollution in urban agglomeration in China, Sust., 2022, 14 (18), 11496. DOI: 10.3390/su141811496.
  • [23] XIE W., GAO W., ZHANG M., Has land resource misallocation increased air pollution in Chinese cities?, Environ. Sci. Pollut. Res., 2023, 30 (18), 52702–52716. DOI: 10.1007/s11356-023-26079-1.
  • [24] SONG Y., ZHU J., YUE Q., ZHANG M., WANG L., Industrial agglomeration, technological innovation and air pollution: Empirical evidence from 277 prefecture-level cities in China, Struct. Chang. Econ. Dyn., 2023, 66, 240–252. DOI: 10.1016/j.strueco.2023.05.003.
  • [25] ZHOU D., LIN Z., LIU L., QI J., Spatial-temporal characteristics of urban air pollution in 337 Chinese cities and their influencing factors, Environ. Sci. Pollut. Res., 2021, 28 (27), 36234–36258. DOI: 10.1007 /s11356-021-12825-w.
  • [26] DU M., LIU W., HAO Y., Spatial correlation of air pollution and its causes in northeast China, Int. J. Environ. Res. Public Health, 2021, 18 (20), 10619. DOI: 10.3390/ijerph182010619.
  • [27] BAI Y., WU L., KAI Q., ZHANG Y.F., SHEN Y.Y., ZHOU Y., A geographically and temporally weighted regression model for ground-level PM2.5 estimation from satellite-derived 500 m resolution AOD, Rem. Sens., 2016, 8 (3), 262. DOI: 10.3390/rs8030262.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b86f718c-d431-4553-8ef7-9b05909225ee
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.