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Niesymetryczna lokalna ścieżka równowagi pokrytycznej 
cienkiej płyty z materiału funkcjonalnie gradientowego

The influence of the imperfection sign (sense) on local postbuckling equilibrium path of plates made of functionally graded 
materials (FGMs) has been analyzed. Koiter’s theory has been used to explain this phenomenon. In the case of local buckling, 
a nonsymmetrical stable equilibrium path has been obtained. The investigations focus on a comparison of the semi-analytical 
method (SAM) and the finite element method (FEM) applied to the postbuckling nonlinear analysis of thin-walled complex FG 
plated structures.

Keywords:	 FGM, FEM, Koiter’s theory, semi-analytical method, postbuckling path.

W pracy przedstawiono analizę wpływu znaku imperfekcji wstępnej na charakterystykę lokalnej pokrytycznej ścieżki równowagi 
płyty wykonanej z materiału gradientowego. Do wyjaśnienia tego efektu zastosowano teorię Koitera. W przypadku lokalnej utraty 
stateczności uzyskano niesymetryczne stateczne ścieżki równowagi. Prezentowane badania były skoncentrowane na porównaniu 
wyników uzyskanych na podstawie własnej metody pół-analitycznej z wynikami uzyskanymi przy zastosowaniu metody elementów 
skończonych w nieliniowej analizie cienkościennych konstrukcji płytowych wykonanych z materiałów gradientowych.

Słowa kluczowe:	 materiały funkcjonalnie gradientowe, MES, teoria Koitera, metoda pól-analityczna, ścieżka 
pokrytyczna.

1. Introduction

Since the mid 1980’s Functionally Graded Materials (FGMs) 
have been a relatively new class of composite materials, which have 
become a very popular research field and have been used in numerous 
engineering applications. A standard functionally gradient material is 
an inhomogeneous composite made up of two constituents – typically 
of metallic and ceramic phases. Within FGMs, different microstruc-
tural phases have different functions, and the overall FGMs attain the 
multistructural status from their property gradation. In most cases, 
these phases content changes gradually along the thickness of the 
plate or shell. This eliminates adverse effects between the layers (e.g., 
shear stress concentrations and/or thermal stress concentrations), typi-
cal for layered composites what generally improves material utility 
properties. The combination of ceramic with a metal component im-
proves the characteristics of FGM structures i.e. a better resistance 
to high temperature (ceramic) and good mechanical features (metal), 
reducing further a fracture possibility of the whole gradient structure. 
These features make high temperature environments the leading ap-
plication area of FGM structures.

The nonlinear analysis of plates and shells devoted to basic types 
of loads is covered in the monograph by Hui-Shen [4]. Author consid-
ers static bending and thermal bending as an introduction to buck-
ling and postbuckling behaviour of FGM plates and shells. The shear 
deformation effect is employed in the framework of Reddy’s higher 
order shear deformation theory (HSDT) [20].

In [19], alongside the HSDT for FGM plates, Reddy compares the 
application of the first order shear deformation theory (FSDT) and the 

classical laminated plate theory (CLPT) to functionally graded plate 
analysis. According to the presented results for thin-walled plates, it 
is obvious that an application of the FSDT gives practically the same 
results as the HSDT. The discrepancy between both theories is of 2% 
in the calculated deflections of the plates under analysis.

The buckling problem of functionally graded plates is discussed 
in the frame of different approaches and for different loads: in [21] 
- biaxial in-plane compression; thermal loads (constant temperature) 
with axial compression in [24]; biaxial in-plane compression in [2] 
and [16], and through the thickness temperature gradient in [23].

Birman and Byrd [1] give a wide review of theories employed for 
a description of grading material properties and focus on the princi-
pal developments in functionally graded materials (FGMs) with an 
emphasis on the recent works published since 2000 (up to 300 works 
cited).

In some papers (e.g.,[14, 27]), the concept of ‘physical neutral 
surface’ that allows one to uncouple the in-plane and out-of-plane de-
formations is introduced.

Due to the complexity of buckling problems of FG plates under 
compound mechanical and thermal loads, the finite element method 
(FEM) seams to be the only possible solution in many cases. There-
fore, in the literature one can find many papers which present results 
of a solution to different problems of FG plate buckling, obtained with 
an application of the FEM, for example [15, 17, 22].

In current paper in the finite element method solution, FG plates 
were modelled as multilayered composite structures whose graded 
material properties in the range of 10–40 isotropic layers were de-
fined. After the convergence analysis the model with twenty layers 
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was accepted. For meshing, a shell element with four nodes and six 
degrees of freedom in each node was employed. The rotational DOF 
in the plane of the element was constrained via the penalty function.

Conducting with the FEM the nonlinear buckling analysis of a 
rectangular FGM plate, subjected to one-directional compression in its 
plane, the authors of the present paper have observed some intriguing 
influence of the imperfection sign (i.e., its direction) on postbuckling 
equilibrium paths of investigated FGM plates. Therefore, this work is 
aimed at an explanation of this phenomenon. The general asymptotic 
Koiter’s theory of stability has been assumed as the basis of investi-
gation. Among all versions of the general nonlinear theory, Koiter’s 
theory [6, 7, 25, 26] of conservative systems is the most popular one, 
owing to its general character and development. Even more, so after 
Byskov and Hutchinson [3] formulated it in a convenient way. The 
theory is based on asymptotic expansions of the postbuckling path for 
potential energy of the system.

The nonlinear stability of thin-walled multilayer structures in 
the first order approximation of Koiter’s theory is solved with the 
modified analytical-numerical method (ANM) presented in [8]. The 
analytical-numerical method (ANM) should also consider the second 
order approximation in the postbuckling analysis of elastic composite 
structures. The second order postbuckling coefficients were estimated 
with the semi-analytical method (SAM) [12], modified by the solution 
method given in [11]. The investigation of stability of equilibrium 
states requires an application of a nonlinear theory that enables us 
to estimate an influence of different factors on the structure behav-
iour. The analysis of postbuckling behaviour of thin-walled composite 
plate structures using the SAM will be by far faster and more thor-
ough than the FEM.

The initial imperfections were introduced by updating the finite 
element mesh with the first mode shape of the eigen-buckling solu-
tion, with a given magnitude corresponding to the plate thickness 
and assumed sign (direction). The eigen-buckling analysis, where the 
critical load was determined despite the eigen-mode, preceded the 
nonlinear buckling analysis.

2. Formulation of the problem

The square plate is supported at all their edges. It is assumed that 
the FG plate obeys Hooke’s law. The material properties are assumed 
to be temperature independent.

In strain-displacement relations - in order to enable the considera-
tion of both out-of-plane and in-plane bending of the plate, all nonlin-
ear terms are present [8, 9, 11]:
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and

	
κ κ κx xx y yy xy xyw w w= − = − = −, , ,            2 	 (2)

where: ,  u v, w  – are components of the displacement vector of the 
plate in the ,  ,  x y z  axis direction, respectively, and the plane x y−  
overlaps the midplane before its buckling.

It should be highlighted that in the majority of publications de-
voted to stability of structures, the terms 2 2

, ,( )x xv u+ , 2 2
, ,( )y yu v+  and 

( , , , , )x y x yu u v v+  in strain tensor components (1) are neglected. How-
ever, the main limitation of the assumed theory lies in an assumption 
of linear relationships between curvatures (2) and second derivatives 

of the displacement w . In such an approach, finite displacements and 
small or moderate rotations are considered [11].

In thin-walled FG structures - plates or shells, usually the ceramic 
volume fraction Vc and metal fraction Vm distribution throughout the 
structure thickness t are described by a simple power law of:
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where: / 2 / 2t z t− ≤ ≤  and 0q ≥  is the volume fraction exponent 

(i.e., for 0q =  – plate is full ceramic and for q = ∞  – plate is metal-
lic – see Fig. 1).

According to the rule of mixture, the properties of the functionally 
graded material (E – Young’s modulus, ν – Poisson’s ratio etc.) can be 
expressed as follows:
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In the present study, the classical plate theory is employed to ob-
tain the governing equations of the thin FG plate equilibrium. Using 
the classical laminated plate theory (CLPT), the stress and moment 
resultants ( N , M ) are defined as [5, 8, 9]:
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where: A , B , D  – are extensional, coupling and bending stiffness 
matrices, respectively. For the FG plate their components are listed 
below:
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Fig. 1. Volume fraction of ceramic along the FGM plate thickness
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Due to the presence of the nontrivial submatrix B , the coupling 
between extensional and bending deformations exists as it is in the 
case of unsymmetrical laminated plates [5, 8, 9]. An extensional force 
results not only in extensional deformations, but also bending of the 
FG plate. Moreover, such a plate cannot be subjected to the moment 
without suffering simultaneously from extension of the middle sur-
face. Coupling between extension and bending is a result of a com-
bination of the geometry and FGM properties in the structures. The 
stretching-bending coupling affects strongly the constitutive equa-
tions and the boundary conditions that have a complex form and the 
solution procedures become difficult.

The equations of stability of thin-walled structures have been de-
rived using a variational method [8, 9, 11]. After expanding the fields 
of displacements U  and the fields of sectional forces N  into a power 
series with respect to the mode amplitudes ζ1  (the dimensionless am-
plitude of the buckling mode), Koiter’s asymptotic theory has been 
employed [3, 6, 7, 8, 9, 10, 13, 18, 25, 26]:
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where: λ  – load parameter, 0 0( ) ( )U ,  N  – prebuckling state fields 

(the zero approximation), (1) 1,   ( )U N  – buckling mode fields (the 

first order approximation), and (2) 2,   ( )U N  – postbuckling fields 
(the second order approximation) for the structure.

The postbuckling equilibrium path within an imperfect structure 
with the amplitude ζ1

*  for the single mode (i.e., an uncoupled mode), 
buckling mode has the following form [3, 8, 9, 13, 26]:
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where: σcr  – critical (bifurcational) value of σ  (instead of λ  ). The 
coefficients in equilibrium equation (9) are given in papers [3, 8, 9, 
13, 26]. It can be easily seen that the amplitude ζ1

*  is a small quantity 
(i.e., only linear terms with respect to ζ1

*  have been accounted for) 
and the linear pre-buckling state is assumed.

The corresponding expression for the total elastic potential energy 
of the structure has the following form:
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where: Π0 0

2

2
= a σ  is energy of the prebuckling linear state.

In the semi-analytical method (SAM), one postulates to determine 
approximated values of the 1111a  coefficients on the basis of the lin-
ear buckling problem. This approach allows the values of the 111a  co-
efficients - according to the applied nonlinear Byskov and Hutchinson 
theory [3, 8, 9, 13, 26] – to be precisely determined.

The considerations performed in [12] and the results of [11] al-
low for concluding that the approximated values of the 1111a  coeffi-
cients correspond to an application of the following simple supported 
boundary conditions of the plate at both edges (i.e. x = 0; )
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The first condition in (11) means that the external loading is not 
subjected to any additional increment.

At the critical point, the dependence describing the relationship 

for the ideal structure (i.e., without the imperfection ζ1 0* = ) is sub-
ject to bifurcation between the external loading and the displacement 
amplitude ζ1 . Equilibrium path equation (9) can be treated as the first 
variation of the system potential energy, that is to say, as the condition 
necessary for the system equilibrium. For the case when the postbuck-

ling coefficients 111 111 1/ 0a a a= ≠  and 1111 1111 1/ 0a a a= >  (which 
corresponds to the case of the FGM plate), in order to determine the 
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equilibrium state, the second variation of energy was calculated Then 
the intersection points of the equilibrium path and the structure stabil-
ity limit of the ideal structure were determined. Finally, the coordi-

nates of two points 1, 2p p  were arrived at:
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A sample equilibrium path for the ideal square FGM plate is pre-
sented in Fig. 2. There it is visible that in the case of the FG plate, 
an nonsymmetrical stable equilibrium path exists. The unstable con-
figuration corresponds to the postbifurcational equilibrium path of the 
plate without imperfection in the range < >ζ ζp p1 2, .

In the linear problem, the critical stress σcr  is the characteristic 
quantity, whereas in the nonlinear first order problem, the magnitude 
of the coefficient 111a  determining the sensitivity to imperfections 
should be accounted for.

3. Analysis of the results

Detailed numerical computations were conducted only for a 
square FGM plate. The plate is subjected to uniform compression in 
the direction of x axis. All plate edges are assumed to be simply sup-
ported. Although, in the subsection devoted to determination of criti-
cal stress, some other boundary conditions along the unloaded edges 
are considered as well.

The following geometrical dimensions of the square plate (Fig. 3) 
and the material constants for Al-TiC are assumed:

	 100b= =
mm; 1t = mm; 69mE = GPa; νm = 0 33. ; 480cE = GPa;νc = 0 2. .

where: indices m and c refer to the metal (Al) and ceramic material 
(TiC), respectively.

In [8], an unbending, prebuckling state, i.e., a distribution field 
of the zero state according to (A1) has been assumed. According to 
assumed (A1) and (8) displacements, for the zero state (i.e., prebuck-
ling) the force and moment dependence (5) takes the form:
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Then for the zero state, it results in an occurrence of nonzero in-
ner sectional forces (A2) (0)

xN , (0)
xM , (0)

yM  in the FG plate. Special 
attention should be drawn to the fact that nonzero magnitudes of the 
sectional moments (0)

xM  and (0)
yM  appear as the effect of the middle 

surface deformations (i.e., membrane deformations) and the nontriv-
ial coupling submatrix B  but not due to an appearance of the middle 
surface curvatures. These moments affect the values of critical loads 
and the values of postbuckling coefficients.

In the subsequent three figures (Figs. 4 - 6), an effect of the vol-
ume fraction exponent q  in Eq. (3), on the values of critical stresses 
and the postbuckling coefficients 111a  and 1111a  for various con-
strain cases of unloaded longitudinal edges, i.e., 0;y b= , is present-
ed. In legends to these figures the descriptions mean:

F – free edges, for which the following has been assumed: •	

0y xy y yN N M Q= = = = ;

S1 – simply supported edges - •	 0y xy yN N w M= = = = ;

S2 – simply supported edges - •	 v N w Mxy y= = = = 0 ;

C – clamped edges - •	 N N w w yy xy= = = ∂ ∂ =/ 0 .

In the case of clamped longitudinal edges y b=( )0; , the same 
results have been obtained as for two other possible conditions of the 
edge support, i.e., when:

v N w w yxy= = = ∂ ∂ =/ 0•	
u v w w y= = = ∂ ∂ =/ 0•	

The values of critical loads (Fig. 4) for the boundary conditions 
under consideration increase with a decrease in the values of volume 
fractions q – as can be expected. Differences in the values of critical 

loads for cases S1 and S2 become visible for 0.5q > . They are rela-
tively inconsiderable (below 10%) and larger for case S2.

Fig. 2. Postbuckling path of FGM plate

Fig. 3. Geometry and loading of FGM plate Fig. 4. Dependence of critical stress on boundary conditions and q factor
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In the range 0.1 10q≤ ≤ , the values of postbuckling coefficients 

111a  (Fig. 5) are negative for all considered cases of boundary condi-
tions. The lowest values occur for case F, whereas for clamped condi-
tions C, they are located between values for S1 and S2. The highest 
values have been found for boundary conditions S2. The maximal 
values of 111a  for the analyzed support conditions are reached for 
2 3q≤ ≤ .

On the other hand, the values of postbuckling coefficients 1111a  
(determined according to the SAM [11, 12]), shown in Fig. 6, are posi-

tive for the assumed boundary conditions F, S1, S2, C for 0.1 10q≤ ≤  . 

The lowest values of 1111a  have been obtained, as expected, for 

case F. The values of 1111a  for case C are by approximately 60% 
lower than for conditions S1 and S2. For condition S2, the values of 

1111a  are higher than for S1, and these differences become visible for

0.5q > . However, they do not exceed 5% for the range of variability 

0.1 10q≤ ≤  under consideration.
As it has been discussed in detail in [8], sectional moments of 

the zero state (0)
xM  and (0)

yM  do not enter the first order equations 
of equilibrium and boundary conditions. The nonzero values of post-

buckling three-index coefficients 111a  result from an occurrence of 

the nonzero coupling submatrix B . The coefficient 111a  character-
izing the initial postbuckling behaviour belongs to surface integrals 

of the type σ ( ) ( )( )1
2

1⋅ l U  (according to the notation introduced by 
Byskov and Hutchinson [3, 26]). An appearance of first order inter-

nal forces (i.e., related to the forces (1) (1) (1), ,x y xyN N N ) causes that the 

coefficients 111a reach values other than zero. It should be noted yet 

that the values of 111a , in principle, are relatively small. Due to the 
above-mentioned reasons, in the analysis of postbuckling equilibrium 
paths of the FG plate they have been usually neglected. However, 

when we take into account the nonzero values of 111a , a phenom-
enon of occurrence various postbuckling equilibrium paths for dif-

ferent signs of imperfection (i.e., ζ1
* ) can be explained. Due to the 

boundary conditions (11) assumed along the loaded edges ( ;x O=  ) 

and unloaded edges ( ;y O b= ) - respectively for cases F, S1, S2, and 
C; one obtains different distributions of inner forces of the first order, 

i.e., (1) (1) (1), ,x y xyN N N , (1) (1) (1), ,x y xyM M M . These inner forces values are 
determined with accuracy up to a constant, as it takes place for eigen-
problems. The conditions on loaded edges (11a) enforce a generation 
of a self-balancing system of forces (1)

xN . Below, few exemplary dia-
grams for S2 boundary conditions on longitudinal edges, for 0.5q =  
are shown.

In Fig.7, distributions of first-order inner membrane forces 
(1) (1) (1), ,x y xyN N N  are shown, whereas the corresponding distributions 

of bending moments (1) (1) (1), ,x y xyM M M  along the plate width are ad-
ditionally presented in Fig. 8. As it can be easily noticed, the values 
of inner forces are of the same order of magnitude. According to the 
assumption, the distributions of inner forces (1) (1),x yN N , (1) (1),x yM M  
are symmetrical with respect to the plate axis of symmetry (i.e., for

.5y O b= ), whereas the distribution of (1)
xyN , (1)

xyM  forces is antisym-
metrical. The boundary conditions of unloaded edges cause a self-re-
setting of (1) (1),xy yN M . For edges ;y O b=  the value of moment (1)

xM  
is other than zero and results from the first-order nonzero membrane 
deformations ε εx y

( ) ( ),1 1  and the nontrivial coupling matrix B . The 
nonzero values of all first-order inner forces for the FGM plate cause 
that nonzero values of the coefficients 111a  appear. These values are 
relatively low but exert a significant effect on the sensitivity of the 
system to values and signs of the imperfection ζ1

* .

To verify the proposed SAM solution, finite element computa-
tions were performed for the FG plate under axial loading. The com-
mercial ANSYS software was applied for the numerical calculations. 

Fig. 5. Coefficient ā111 value as a function of q and boundary conditions

Fig. 6. Coefficient ā1111 value as a function of q and boundary conditions

Fig. 7. First order in-plane force resultants distribution along the plate width
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The numerical model was created with an application of a shell finite 
element. It was a multi-layered four-node element with six degrees 
of freedom at each node (three translations in the directions of local 
coordinate axes and three rotations around these axes). The rotational 
DOF around the normal to the plate midplane was constrained via the 
penalty function to relate this independent rotation with the in-plane 
components of displacements. This element is dedicated for model-
ling multi-layered structures and is equipped with the section option 
which allows for easy tailoring the lay-ups of the modelled plate. The 
sensitivity to shear strains in this element is governed by the first-order 
shear deformation theory, whereas the element formulation is based 
on the logarithmic strain measure. According to the current analysis 
requirements, the applied finite element was associated with linear 
elastic material properties. To discretize the model, a uniform mesh 
of elements was generated. The boundary conditions on loaded plate 
edges, which followed from S1 type analytical simple support, were 
introduced by displacement constrains in appropriate directions as well 
as coupling of edge node displacements to keep the edges straight.

The initial imperfection was introduced by updating the finite 
element mesh with the local mode shape of the eigen-buckling so-
lution, with a given magnitude corresponding to the plate thickness. 
The eigen-buckling analysis, where the critical load was determined 
despite the eigen-mode, preceded the nonlinear analysis. Therefore, 
the numerical model employed large displacement formulation. The 
load was applied to the plate edges in the form of uniformly distrib-
uted node forces.

For the square plate under analysis and for 0.5q = , the results of 
calculations obtained from the SAM and the FEM were compared. A 
comparison of the results is presented in Fig. 9. For an easier compari-
son of an influence of the imperfection ζ1

*  sign, a change in the ab-

solute values of total deflections w w w t tt t= + = = +0 1 1 1ζ ζ ζ*  
as a function of the load ratio N Ncr cr/ /=σ σ  has been shown. 
The negative value of imperfection corresponds to a initial deflec-
tion along the direction of metal, whereas the positive one - along the 
direction of ceramic.

The results obtained with the FEM are achieved for a full geo-
metrically nonlinear analysis. On the other hand, in the SAM, nonlin-

ear terms related to the imperfection ζ1
*  were neglected, whereas the 

values of the postbuckling coefficient 1111a  were determined approx-
imately. It is followed by visible differences in the results obtained 
with both the methods (SAM and FEM) for the same value of imper-
fection. It can be seen that the sign of imperfection exerts an influence 

on the postbuckling equilibrium path. The initial deflection ζ1
*  along 

ceramic yields higher values of total deflections for the given value of 
load / crN N  than the initial deflection along the direction of metal. 

In both cases the assumed absolute value of imperfection ζ1
*  was 

equal.
Thus, as it was discussed above, the application of Koiter’s the-

ory through the semi-analytical method enables an explanation of 
the phenomenon of various postbuckling equilibrium paths for the 
functionally graded plate for different signs of imperfection with 

the same absolute magnitude ζ1
* . In particular, it can be seen for 

N Ncr cr/ / .= <σ σ 1 3 .

4. Conclusions

The analytical and numerical investigations on FGM – a relatively 
novel material, applications in plate and shell structures are presented. 
The effect of gradually varying volume fraction of constituent materi-
als leads to continuous change from one surface to another eliminat-
ing interface problems and gives smooth material properties of final 
composite which is especially import in thermal environment applica-
tions.

An influence of imperfection values on various postbuckling equi-
librium paths of the FG plate has been analyzed. The basis to explain 
the discussed behaviour is the nonlinear Koiter’s theory of conserva-
tive systems. In the case of the FG plate, nonzero first-order sectional 
inner forces that cause an occurrence of nonzero postbuckling coef-
ficients are responsible for the system sensitivity to imperfection. It 
results in the fact that postbuckling equilibrium paths of plate struc-
tures made of FGMs are unsymmetrically stable. This explains the 
observed differences in plate response dependence on imperfections 
sign (sense).

Fig. 8. First order moment resultants distribution along the plate width Fig. 9. Sign of imperfection influence on the buckling and postbuckling path
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Appendix

The prebuckling solution to the FG plate consisting of homog-
enous fields is assumed as (see Eq. (17) in [8]):

	
u x

v y A A

w

( )

( )

( )

( / )

/

0

0
12 22

0

2

0

= −

=

=

 ∆

∆
	 (A1)

where Δ is the actual loading. This loading of the zero state is speci-
fied as a product of the unit loading and the scalar load factor.

Taking into account relationship (5), inner sectional forces of the 
prebuckling (i.e., unbending) state for the assumed homogeneous 
field of displacements (A1) are expressed by the following relation-
ships before the redistribution of forces in the plate due to plate de-
formations:
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The assumed displacement field and the field of inner forces, cor-
responding to it for the prebuckling state, fulfil equilibrium equations 
for the zero state as an identity.

The omission of the displacements of the fundamental state im-
plies that we ignore the difference between the configuration of the 
non-deformed state and the fundamental state and we may conse-
quently regard the previously defined displacements u v( ) ( ),0 0  as the 
additional ones from the fundamental state to the adjacent state.

The first order approximation, being the linear problem of sta-
bility, allows for determination of values of critical loads, buckling 
modes, and initial postbuckling equilibrium paths.
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