PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The law of effective stress for rocks in light of results of laboratory experiments

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Prawo naprężeń efektywnych dla skał w świetle wyników badań laboratoryjnych
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of laboratory tests carried out in order to formulate effective stress law. The law was sought for two different cases: first - when rock was treated as a porous Biot medium (Biot, 1941; Nur & Byerlee, 1971) and second - when the law was formulated according to definition of Robin (1973) developed by Gustkiewicz (1990) and Nowakowski (2007). In the first case coefficents (4) and (5) of the Biot equation (3) were were determined on the basis of compressibility test, in the second one effective pressure equation (9) and effective pressure value (11) were found on the basis of results of so called individual triaxial compression test (see Kovari et al., 1983) according to the methodology given by Nowakowski (2007). On the basis of Biot coefficients set of values was found that volumetric strain of the pore space described by a coefficient (5) was not dependent on the type of pore fluid and the pore pressure of only, while in case of volumetric strain of total rock described by coefficient (4) both the structure and texture of rock were important. The individual triaxial compression test results showed that for tested rock an effective pressure equation was a linear function of pore pressure as (15). The so called Rebinder effect (Rehbinder & Lichtman, 1957) might cause, that the α coefficient in equation (15) could assume values greater than one. This happened particularly in the case when the porous fluid was non-inert carbon dioxide. In case of inert pore fluid like kerosene the test results suggested that the a coefficient in equation (15) decreased while the differential strength limit was increasing. This might be caused by, so called, dillatancy strengthening (see Zoback & Byerlee, 1975). Another considered important parameter of the equation (15) was the value of the effective press p'. The results showed that the value of this parameter was practically independend on the pore fluid type. This conclusion was contrary to previous research (see, for example, Gustkiewicz et al., 2003 and Gustkiewicz, 1990) so these results should be treated with caution. There are no doubts, however, over p' increasing simultaneously with increase in Rσ1-σ3. Basically, the differential strength limit of the specimen is greater the greater is confining pressure applied to it. Thus, higher Rσ1-σ3 values are accompanied by higher p'.
PL
W artykule przedstawiono wyniki badań laboratoryjnych wykonanych w celu sformułowania prawa naprężeń efektywnych, które prowadzono dla dwóch różnych sposobów formułowania tego prawa. W pierwszym przypadku zakładano, że skała jest ośrodkiem porowatym Biota (Biot, 1941; Nur i Byerlee, 1971), a samo prawo naprężeń efektywnych ma postać (3). W drugim przypadku posługiwano się podejściem zaproponowanym przez Robina (1973), które zostało następnie rozwinięte w Pracowni Odkształceń Skał IMG PAN m.in. przez Gustkiewicza (1990) i Nowakowskiego (2007) i wyznaczano prawo naprężeń efektywnych składające się z dwóch elementów: równania ciśnienia efektywnego (9) oraz wartości ciśnienia efektywnego (11). Podstawą wyznaczania współczynników dla równania Biota (3) były testy ściśliwości próbek skał pozostających w stanie powietrznie suchym oraz nasyconych inertnymi (azot, nafta) bądź sorbującymi (dwutlenek węgla, woda destylowana) płynami porowymi. Na podstawie wyników tych testów wyznaczano moduły ściśliwości badanych skał a następnie wyliczano wartości współczynników Biota wg (4) i (5). Przedmiotem badań były próbki z naprężeń dwóch skał oznaczonych jako piaskowiec 8348 i wapień 9166. Równanie ciśnienie efektywnego (9) oraz wartość ciśnienia efektywnego (11) wyznaczano wg metodyki podanej przez Nowakowskiego (2007) na podstawie wyników testu klasycznego trójosiowego ściskania (ang. „individual test” - por. Kovari i in., 1983) uzyskanych dla próbek skał, w których naprężenie różnicowe osiągnęło wartość różnicowej granicy wytrzymałości Rσ1-σ3. Przedmiotem badań były próbki wycięte ze skały oznaczonej jako piaskowiec „Tumlin”, a jako płynów porowych użyto azotu i nafty (płyny inertne) oraz dwutlenku węgla i wody destylowanej (płyny sorbujące). Z przedstawionych wyników badań nad wartościami współczynników Biota wynika, że rodzaj płynu porowego nie wpływa na wartość wyznaczanego według wzoru (5) współczynnika α2 co oznacza, że deformacja objętościowa tej przestrzeni nie zależy od rodzaju płynu porowego, a jedynie od panującego w niej ciśnienia. W przypadku współczynnika α1 (wzór (4)) określającego wpływ ciśnienia porowego na deformację ośrodka jako całości wyniki wykazują pewną sprzeczność. Wartości α1 uzyskane dla piaskowca gdy płynem porowym jest nieściśliwa ciecz są nieco większe niż gdy jest nim ściśliwy gaz. Z kolei wyniki uzyskane dla opoki wskazują na coś wręcz przeciwnego: stosunkowo duża (większa niż dla piaskowca) wartość α1 dla gazu i wyraźnie mniejsze wartości α1 dla cieczy. Ostatecznie wydaje się, że to, czy wartość współczynnika α1 zależy rodzaju medium porowego jest w dużym stopniu uwarunkowane strukturą i teksturą badanej skały. Dla skał okruchowych o dużej porowatości i dużej swobodzie filtracji płynu porowego rodzaj tego płynu będzie miał prawdopodobnie mniejsze znaczenie natomiast dla skał zwartych o małej porowatości mogą zachodzić duże różnice w wartościach tego współczynnika w zależności od tego czy medium porowym jest ciecz, czy gaz. Wyniki wykonanych testów konwencjonalnego trójosiowego ściskania pozwoliły stwierdzić, że dla badanego piaskowca równanie ciśnienia efektywnego na granicy wytrzymałości jest liniową funkcją ciśnienia porowego pp postaci (15). Zgodnie z tym co pokazali Gustkiewicz i in. (2004) oraz Nowakowski (2005, 2007) jeżeli oddziaływanie płynu porowego na skałę nie jest wyłącznie mechaniczne, to może dojść do sytuacji, w której współczynnik α w równaniu (15) ma wartość większą od 1. Zjawiskiem fizykochemicznym odpowiedzialnym za taką sytuację jest najprawdopodobniej tzw. efekt Rebindera (Rehbinder i Lichtman, 1957), który polega na obniżeniu wytrzymałości skały wskutek adsorpcji gazu porowego, przy czym spadek wytrzymałości jest tym większy, im wyższa jest ilość zasorbowanego gazu (por. także Hołda, 1990). Jeżeli płynem porowym jest CO2 to im wyższa wartość Rσ1-σ3 tym wyższa wartość α, czyli tym silniej manifestuje się wpływ ciśnienia porowego (rys. 6). Przyczyn takiego zjawiska należy prawdopodobnie upatrywać w sposobie pękania badanego materiału. Jak wiadomo różnicowa granica wytrzymałości rośnie ze wzrostem ciśnienia okólnego oraz ze wzrostem różnicy p - pp (Gustkiewicz, 1990). Wzrostowi temu towarzyszy stopniowa zmiana sposobu pękania skały od kruchego pękania do ciągliwego płynięcia. W próbce pękającej krucho wytwarza się zazwyczaj jedna płaszczyzna pęknięcia, wzdłuż której następuje zniszczenie próbki. Natomiast w próbce pękającej w sposób ciągliwy powstaje wiele równoległych do siebie płaszczyzn zniszczenia. Oznacza to, że sumaryczna powierzchnia nowych spękań powstających podczas zniszczenia ciągliwego jest prawdopodobnie znacznie większa niż podczas kruchego pęknięcia. Jeśli w trakcie eksperymentu spełnione są warunki (6) to pęknięcia te zostają wypełnione pozostającym pod stałym ciśnieniem gazem porowym, a to z kolei oznacza wzrost powierzchni fizykochemicznie czynnej, na której mogą zachodzić procesy sorpcyjne. A zatem i wpływ efektów sorpcyjnych powinien się okazać dla wyższych wartości Rσ1-σ3 znacząco większy. W przypadku, gdy płynem porowym była inertna ciecz (nafta) pokazane na rys. 6 wyniki badań sugerują, że wartość współczynnika α maleje ze wzrostem Rσ1-σ3. Przyczyną może tu być tzw. Wzmocnienie dylatancyjne (por. Zoback i Byerlee, 1975). W tym przypadku polega ono na tym, że gdy próbka skalna osiąga swoja granicę wytrzymałości zaczynają się w niej rozwijać nowe spękania, czego konsekwencją jest wzrost objętości przestrzeni porowej wywołujący spadek ciśnienia porowego. Jeżeli spadek ten nie zostanie wyrównany przez filtrującą z zewnątrz ciecz to rzeczywista wartość ciśnienia porowego będzie niższa niż zakładana. Z punktu widzenia prawa ciśnienia efektywnego oznacza to, że wpływ ciśnienia porowego na wartość Rσ1-σ3. ulegnie zmniejszeniu, co powinno dać α < 1. Drugim istotnym parametrem równania (15) jest tzw. wartość ciśnienia efektywnego p'. W rozważanych eksperymentach wielkość tę należy traktować jako pewne zastępcze ciśnienie okólne, które - zastosowane do skały dla pp = 0 - da w efekcie taka samą wartość Rσ1-σ3 jak para niezerowych ciśnień p i pp spełniających równanie (15). Pokazane na rys. 7 zależności sugerują, że wartość wielkości p' praktycznie nie zależy od rodzaju płynu porowego. Innymi słowy: jeśli pp = 0 to Rσ1-σ3 = const. dla danej wartości p' niezależnie od tego, czym wypełniona jest przestrzeń porowa skały. Wartości p' rosną natomiast ze wzrostem Rσ1-σ3 gdyż różnicowa granica wytrzymałości próbki jest tym wyższa im wyższe jest obciążające próbkę ciśnienie okólne. Jest zatem naturalne, że wyższym wartościom Rσ1-σ3 towarzyszą wyższe wartości p'.
Rocznik
Strony
1027--1044
Opis fizyczny
Bibliogr. 32 poz., rys., tab., wykr.
Twórcy
  • Strata Mechanics Research Institute of the Polish Academy of Sciences, ul. Reymonta 27, 30-059 Kraków, Poland
Bibliografia
  • Biot M.A., 1941. General theory of three dimensional consolidation. J. Appl. Phys. 12: 155-168.
  • Bluhm J., de Boer R., 1996. Effective stress - clarification. Arch. Appl. Mech., Vol. 66, pp. 479-492.
  • de Boer R., Ehlers W., 1990. The development of the concept of effective stresses. Acta Mechanica, Vol. 83, pp. 77-92.
  • de Boer R., 2005. The Engineer and the scandal - a piece of science history. Springer Verl., Berlin, 293 pages.
  • Detournay E., Cheng, A.H.-D., 1993. Fundamentals of Poroelasticity. In: „Comprehensive Rock Engineering: Principles, Practice & Projects”, Vol. II, C. Fairhurst (ed.), Pergamon Press, 113-171.
  • Dutka B., Lizak Z., Nowakowski A., Nurkowski J., Wierzbicki M., 2008. Zależność wartości współczynnika Biota od rodzaju medium porowego. W: Prace Instytutu Mechaniki Górotworu PAN, t. 10, z. 1-4, s. 3-16.
  • Fabre D., Gustkiewicz J., 1998. Influence of rock porosity on the Biot’s coefficient. In: “Poromechanics - A Tribute to Maurice A. Biot”, Proc. of the Biot Conf. on Poromech., Louvain-la-Neuve (Belgium), 14-16 Sept. 1998, Thismus et al. (eds.), Balkema, Rotterdam.
  • Fillunger P., 1915. Versuche über die Zugfestigkeit bei allseitigem Wasserdruck. Österr. Wochenschrift für den öffentlichen Baudienst. Vol. 29, pp. 443-448.
  • Fillunger P., 1914. Neuere Grundlagen für die statische Berechnung von Talsperren. Zeitschrift des Österr. Ing.- und Arch.- Vereines, Vol. 23, pp. 441-447.
  • Fillunger P., 1913. Der Auftrieb in Talsperren. Österr. Wochenschrift für den öffentlichen Baudienst. Vol. 19, pp. 532-556; 567-570.
  • Gustkiewicz J., 1990. Deformacje i wytrzymałość skał w trójosiowym stanie naprężenia z uwzględnieniem płynów porowych. W: „Górotwór jako ośrodek wielofazowy. Wyrzuty skalno-gazowe”, praca zbiorowa, J. Litwiniszyn (ed.), Wydawnictwo AGH, t. 1, s. 96-136.
  • Gustkiewicz J., 1989. Objętościowe deformacje skały i jej porów. Arch. Min. Sci., Vol. 34, Issue 3, 593-609.
  • Gustkiewicz J., Nowakowski A., 2004. Deformacje i pękanie skał w warunkach laboratoryjnych. Arch. Min. Sci., 49, Special Issue, 9-50.
  • Gustkiewicz J., Nowakowski A., Nurkowski J., Stanisławski L., Lizak Z., 2004. Kształtowanie się ciśnienia efektywnego w klasycznym, trójosiowym stanie naprężenia, na podstawie wyników pękania i deformacji wybranych skał. Prace IMG PAN, t. VI, s. 3-17.
  • Gustkiewicz J., Nowakowski A., Lizak Z., 2003. Zmiany niektórych właściwości piaskowca pod wpływem sorbujących i niesorbujących płynów porowych pod ciśnieniem. Prace IMG PAN, t. 5, nr 3-4, s. 367-375.
  • Handin J., Hager R.V., Friedman M., Feather J.N., 1963. Experimental deformation of sedimentary rocks under confining pressure: pore pressure tests. Bull. Am. Assoc. Petr. Geol., Vol. 47, pp. 717-755.
  • Hołda S., 1990. Wpływ sorpcji gazów, par i cieczy na wytrzymałość skał. W W: „Górotwór jako ośrodek wielofazowy. W: „Górotwór jako ośrodek wielofazowy. Wyrzuty skalno-gazowe”, praca zbiorowa, J. Litwiniszyn (ed.), Wydawnictwo AGH, t. 2, s. 443-453.
  • Kovári K., Tisa A., Einstein H.H., Franklin J.A., 1983. Suggested Methods for Determining the Strength of Rock Materials in Triaxial Compression: Revised Version. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., Vol. 20, No. 6, pp. 283-290.
  • Lade P.V., de Boer R., 1997. The concept of effective stress for soil, concrete and rock. Géotechnique, Vol. 47, No. 1, pp. 71-67.
  • Nowakowski A., 2007. On certain determinantial method of equation and effective pressure evaluation on the basis of laboratory researches. Arch. Min. Sci., V. 52, No. 4, pp. 587-610.
  • Nowakowski A., 2005. Różne sposoby kształtowania się ciśnienia efektywnego w skale znajdującej się na granicy wytrzymałości. Prace IMG PAN, t. 7, nr 3-4, s. 189-202.
  • Nowakowski A., Młynarczuk M., Ratajczak T., Gustkiewicz J., 2003. Wpływ warunków termicznych na zmianę niektórych właściwości fizycznych i strukturalnych wybranych skał, Prace IMG PAN. Rozprawy, Monografie, nr 5, 104 s.
  • Nur A., Byerlee J.D., 1971. An Exact Effective Stress Law for Elastic Deformation of Rock with Fluids. J. Geophys. Res., 76, 26, 6414-6419.
  • Paterson M.S., Wong T.-f., 2005. Experimental Rock Deformation - The Brittle Field. Springer-Verlag Berlin Heidelberg, 347 pages.
  • Rehbinder P., Lichtman V., 1957. Effect of surface active media on strains and rupture in soils. In: Electrical Phenomena and Soil/Liquid Interface. J. H. Schulman (ed.), Proc. 2nd Int. Congr. Surface Activity, Vol. III, London, Butterworths, 563-582.
  • Rice J.R., Cleary M.P., 1976. Some basic stress diffusion solutions for fluid-saturated elastic porous media with compressible constituents. Reviews of Geophysics and Space Physics. 14(4): 227-241.
  • Robin P.-Y.F., 1973. Note on effective pressure. J. Geophys. Res., 78, 2434-2437.
  • Roegiers J.-C., Cui L., Bai M., 1978. Poroelasticity applications. In: Mechanics of Jointed and Faulted Rock. Proc. Of the MJFR-3 Int. Conf., Vienna, 6-9 April 1998. Hans-Peter Rossmanith (ed.), Balkema, Rotterdam, 39-46.
  • Terzaghi K., 1923. Die Berechnung der Durchlässigkeitsziffer des Tones aus dem Verlauf der Spannungs-erscheinungen. Sitzungsber. Akad. Wiss. Wien Math.-Naturwiss. Kl., Abt. 2A, 132, 105.
  • Terzaghi K., 1936. The shearing resistance of saturated soils and the angle between planes of shear. In: Proc. Int. Conf. Soil Mech. And Found. Eng., Casagrande, A. & Rutledge P.C. & Watson J.D. (eds), Harvard University, Vol. I, pp. 54-56.
  • Zienkiewicz O.C., Shiomi T., 1984. Dynamic behaviour of saturated porous media; the generalized Biot formulation and its numerical solution. Int. J. Num. Anal. Meth. Geomech. 8: 71-96.
  • Zoback M.D., Byerlee J.D., 1975. The effect of microcrack dilatancy on the permeability of Westerly granite. J. Geophys. Res., 80, 752-755.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8689860-6c40-4a4b-85e2-cb3e1019a054
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.