PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Justification for the body construction selection of the unmanned uninhabited underwater apparatus

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper explores the possibility of creating an underwater apparatus in the form of a body of rotation. The form of the device will allow to effectively examine the found underwater objects, the bottom topography, measurement of other parameters of the underwater environment or objects. The devices of a different streamlined body form are considered. The apparatus in the form of a rotation body is proposed. The geometric shape of the proposed apparatus, the system of motion and control are investigated. Methods for calculating the motion parameters, methods for the vehicle positioning in the flow and the underwater vehicle movement in the vertical plane are proposed. The study confirms the ability of the underwater vehicle to move under water in a horizontal and vertical directions. The study confirms that the device possess stability at rectilinear motion, good turning ability and at the same time it is able to position itself during the flow.
Twórcy
  • Admiral Makarov State University of Maritime and Inland Shipping, Saint‐Petersburg, Russia
  • Admiral Makarov State University of Maritime and Inland Shipping, Saint‐Petersburg, Russia
  • Admiral Makarov State University of Maritime and Inland Shipping, Saint‐Petersburg, Russia
Bibliografia
  • [1] Unmanned underwater vehicles. Classification. GOST R 56960 – 2016, Moscow: Standardinform, 2016
  • [2] McFarland, C. J., & Whitcomb, L. L. (2014, May). Experimental evaluation of adaptive model‐based control for underwater vehicles in the presence of unmodeled actuator dynamics. In Robotics and Automation (ICRA), 2014 IEEE International Conference on (pp. 2893‐2900). IEEE. DOI: 10.1109/ICRA.2014.6907275
  • [3] Chung, H., Cao, S., Philen, M., Beran, P. S., & Wang, K. G. (2018). CFD‐CSD coupled analysis of underwater propulsion using a biomimetic fin‐and‐joint system. Computers & Fluids. (172), pp. 54–66 doi:10.1016/j.compfluid.2018.06.014.
  • [4] Gerigk, M. K., & Wójtowicz, S. (2015). An Integrated Model of Motion, Steering, Positioning and Stabilization of an Unmanned Autonomous Maritime Vehicle. TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, (9). 591‐ 596 DOI: 10.12716/1001.09.04.18
  • [5] Bassin A.M., Anfimov V.N. Vessel hydrodynamics L.: River transport, 1961
  • [6] Alam, K., Ray, T., & Anavatti, S. G. (2014). Design and construction of an autonomous underwater vehicle. Neurocomputing, 142, 16‐29. doi:10.1016/j.neucom.2013.12.055
  • [7] Liu, Y., Fang, P., Bian, D., Zhang, H., & Wang, S. (2014). Fuzzy comprehensive evaluation for the motion performance of autonomous underwater vehicles. Ocean Engineering, 88, 568‐577. doi: 10.1016/j.oceaneng.2014.03.013
  • [8] Wang, X., Song, B., Wang, P., & Sun, C. (2018). Hydrofoil optimization of underwater glider using Free‐Form Deformation and surrogate‐based optimization. International Journal of Naval Architecture and Ocean Engineering, 6, 730‐740, doi:10.1016/j.ijnaoe.2017.12.005
  • [9] Javaid, M. Y., Ovinis, M., Hashim, F. B., Maimun, A., Ahmed, Y. M., & Ullah, B. (2017). Effect of wing form on the hydrodynamic characteristics and dynamic stability of an underwater glider. International Journal of Naval Architecture and Ocean Engineering, 9(4), 382‐389. doi.:10.1016/j.ijnaoe.2016.09.010
  • [10] Yang, Y., Liu, Y., Wang, Y., Zhang, H., & Zhang, L. (2017). Dynamic modeling and motion control strategy for deep‐sea hybrid‐driven underwater gliders considering hull deformation and seawater density variation. Ocean Engineering, 143, 66‐78. doi:10.1016/j.oceaneng.2017.07.047
  • [11] Ridao, P., Carreras, M., Ribas, D., Sanz, P. J., & Oliver, G. (2015). Intervention AUVs: the next challenge. Annual Reviews in Control, 40, 227‐241. Doi:10.1016/j.arcontrol.2015.09.015
  • [12] Sun, C., Song, B., & Wang, P. (2015). Parametric geometric model and shape optimization of an underwater glider with blended‐wingbody. International Journal of Naval Architecture and Ocean Engineering, 7(6), 995‐1006. DOI: 10.1515/ijnaoe‐2015‐ 0069
  • [13] He, Y., Song, B., & Dong, H. (2018). Multi‐objective optimization design for the multi‐bubble pressure cabin in BWB underwater glider. International Journal of Naval Architecture and Ocean Engineering, 10(4), 439‐ 449. Doi: 10.1016/j.ijnaoe.2017.08.007
  • [14] Zhang, F., Zhang, F., & Tan, X. (2012, October). Steady spiraling motion of gliding robotic fish. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on (pp. 1754‐1759). IEEE. doi:10.1109/iros.2012.6385860
  • [15] Zhang, F., Thon, J., Thon, C., & Tan, X. (2014). Miniature underwater glider: Design and experimental results. IEEE/ASME Transactions on Mechatronics, 19(1), 394‐399. doi:10.1109/tmech.2013.2279033
  • [16] Yu, P., Wang, T., Zhou, H., & Shen, C. (2018). Dynamic modeling and three‐dimensional motion simulation of a disk type underwater glider. International Journal of Naval Architecture and Ocean Engineering, 10(3), 318‐328. Doi:10.1016/j.ijnaoe.2017.08.002
  • [17] L. G. Loitsansky, A. I. Lurie, Theoretical mechanics course, Vol. II
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8642119-0e5a-431b-b114-d8798205c2a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.