PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optical coherence tomography image for automatic classification of diabetic macular edema

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Diabetic macular edema (DME) is the dominant reason of diabetic visual loss, so early detection and treatment of DME is of great significance for the treatment of diabetes. Based on transfer learning, an automatic classification method is proposed to distinguish DME images from normal images in optical coherence tomography (OCT) retinal fundus images. Features of the DME are automatically identified and extracted by the pre-trained convolutional neural network (CNN), which only involves fine-tuning the VGGNet-16 network without any user intervention. An accuracy of 97.9% and a sensitivity of 98.0% are acquired with the OCT images in the Duke data set from experimental results. The proposed method, a core part of an automated diagnosis system of the DME, revealed the ability of fine-tuning models to train non-medical images, allowing them can be classified with limited training data. Moreover, it can be developed to assist early diagnosis of the disease, effectively delaying (or avoiding) the progression of the disease, consequently.
Czasopismo
Rocznik
Strony
567--577
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
  • Department of Electronics Information Engineering, School of Information Engineering, Nanchang University, Nanchang 330031, China
autor
  • Department of Electronics Information Engineering, School of Information Engineering, Nanchang University, Nanchang 330031, China
autor
  • Department of Electronics Information Engineering, School of Information Engineering, Nanchang University, Nanchang 330031, China
Bibliografia
  • [1] BOWES RICKMAN C., FARSIU S., TOTH C.A., KLINGEBORN M., Dry age-related macular degeneration: mechanisms, therapeutic targets, and imaging, Investigative Ophthalmology & Visual Science 54(14), 2013, pp. ORSF68–ORSF80, DOI:10.1167/iovs.13-12757.
  • [2] SZKULMOWSKI M., BAJRASZEWSKI T., SZKULMOWSKA A., TARGOWSKI P., KOWALCZYK A., Efficient residual error reduction in complex spectral optical coherence tomography with arbitrary or unknown phase, Optica Applicata 36(1), 2006, pp. 147–155.
  • [3] FUJIMOTO J.G., DREXLER W., SCHUMAN J.S., HITZENBERGER C.K., ISP focus issue: optical coherence tomography (OCT) in ophthalmology, Optics Express 17(5), 2009, pp. 3978–3979, DOI:10.1364/OE.17.003978.
  • [4] GARCIA-ALLENDE P.B., AMYGDALOS I., DHANAPALA H., GOLDIN R.D., HANNA G.B., ELSON D.S., Morphological analysis of optical coherence tomography images for automated classification of gastrointestinal tissues, Biomedical Optics Express 2(10), 2011, pp. 2821–2836, DOI:10.1364/BOE.2.002821.
  • [5] GOSSAGE K.W., TKACZYK T.S., RODRIGUEZ J.J., BARTON J.K., Texture analysis of optical coherence tomography images: feasibility for tissue classification, Journal of Biomedical Optics 8(3), 2003, pp. 570–575, DOI:10.1117/1.1577575.
  • [6] NAYAK J., BHAT P.S., ACHARYA U.R., Automatic identification of diabetic maculopathy stages using fundus images, Journal of Medical Engineering & Technology 33(2), 2009, pp.119–129, DOI:10.1080/03091900701349602.
  • [7] MOOKIAH M.R.K., ACHARYA U.R., CHANDRAN V., MARTIS R.J., TAN J.H., KOH J.E.W., CHUA C.K., TONG L., LAUDE A., Application of higher-order spectra for automated grading of diabetic maculopathy, Medical & Biological Engineering & Computing 53(12), 2015, pp. 1319–1331, DOI:10.1007/s11517-015-1278-7.
  • [8] GIANCARDO L., MERIAUDEAU F., KARNOWSKI T.P., LI Y., GARG S., TOBIN K.W., CHAUM E., Exudate-based diabetic macular edema detection in fundus images using publicly available datasets, Medical Image Analysis 16(1), 2012, pp. 216–226, DOI:10.1016/j.media.2011.07.004.
  • [9] TARIQ A., AKRAM M.U., SHAUKAT A., KHAN S.A., Automated detection and grading of diabetic maculopathy in digital retinal images, Journal of Digital Imaging 26(4), 2013, pp. 803–812, DOI:10.1007/s10278-012-9549-4.
  • [10] ZAIDI Z.Y., AKRAM M.U., TARIQ A., Retinal image analysis for diagnosis of macular edema using digital fundus images, [In] 2013 IEEE Jordan Conference on Applied Electrical Engineering and Computing Technologies (AEECT), Amman, 2013, pp. 1–5, DOI:10.1109/AEECT.2013.6716476.
  • [11] SINTHANAYOTHIN C., BOYCE J.F., COOK H.L., WILLIAMSON T.H., Automated localisation of the optic disc, fovea, and retinal blood vessels from digital colour fundus images, British Journal of Ophthalmology 83(8), 1999, pp. 902–910, DOI:10.1136/bjo.83.8.902.
  • [12] BABY C.G., CHANDY D.A., Content-based retinal image retrieval using dual-tree complex wavelet transform, [In] 2013 International Conference on Signal Processing, Image Processing & Pattern Recognition, Coimbatore, 2013, pp. 195–199, DOI:10.1109/ICSIPR.2013.6497987.
  • [13] LITJENS G., KOOI T., BEJNORDI B.E., SETIO A.A.A., CIOMPI F., GHAFOORIAN M., VANDER LAAK J.A.W.M., GINNEKEN B., SÁNCHEZ C.I., A survey on deep learning in medical image analysis, Medical Image Analysis 42, 2017, pp. 60–88, DOI:10.1016/j.media.2017.07.005.
  • [14] KRIZHEVSKY A., SUTSKEVER I., HINTON G., ImageNet classification with deep convolutional neural networks, Advances in Neural Information Processing Systems 25(2), 2012, pp. 1097–1105.
  • [15] SUN Y., LIANG D., WANG X., TANG X., DeepID3: face recognition with very deep neural networks, eprint arXiv:1502.00873, February 2015.
  • [16] ASAOKA R., MURATA H., IWASE A., ARAIE M., Detecting preperimetric glaucoma with standard automated perimetry using a deep learning classifier, Ophthalmology 123(9), 2016, pp. 1974–1980, DOI:10.1016/j.ophtha.2016.05.029.
  • [17] PRENTAŠIĆ P., HEISLER M., MAMMO Z., LEE S., MERKUR A., NAVAJAS E., BEG M.F., ŠARUNIC M., LONČARIĆ S., Segmentation of the foveal microvasculature using deep learning networks, Journal of Biomedical Optics 21(7), 2016, article 075008, DOI:10.1117/1.JBO.21.7.075008.
  • [18] LEE C.S., TYRING A.J., DERUYTER N.P., WU Y., ROKEM A., LEE A.Y., Deep-learning based, automated segmentation of macular edema in optical coherence tomography, Biomedical Optics Express 8(7), 2017, pp. 3440–3448, DOI:10.1364/BOE.8.003440.
  • [19] WILKINS G.R., HOUGHTON O.M., OLDENBURG A.L., Automated segmentation of intraretinal cystoid fluid in optical coherence tomography, IEEE Transactions on Biomedical Engineering 59(4), 2012, pp. 1109–1114, DOI:10.1109/TBME.2012.2184759.
  • [20] WANG Y., ZHANG Y., YAO Z., ZHAO R., ZHOU F., Machine learning based detection of age-related macular degeneration (AMD) and diabetic macular edema (DME) from optical coherence tomography (OCT) images, Biomedical Optics Express 7(12), 2016, pp. 4928–4940, DOI:10.1364/BOE.7.004928.
  • [21] DING S., ZHU H., JIA W., SU C., A survey on feature extraction for pattern recognition, Artificial Intelligence Review 37(3), 2012, pp. 169–180, DOI:10.1007/s10462-011-9225-y.
  • [22] SRINIVASAN P.P., KIM L.A., METTU P.S., COUSINS S.W., COMER G.M., IZATT J.A., FARSIU S., Fully automated detection of diabetic macular edema and dry age-related macular degeneration from optical coherence tomography images, Biomedical Optics Express 5(10), 2014, pp. 3568–3577, DOI:10.1364/BOE.5.003568.
  • [23] PAN S.J., YANG Q., A survey on transfer learning, IEEE Transactions on Knowledge and Data Engineering 22(10), 2010, pp. 1345–1359, DOI:10.1109/TKDE.2009.191.
  • [24] SIMONYAN K., ZISSERMAN A., Very Deep Convolutional Networks for Large-Scale Image Recognition, arXiv:1409.1556, 2014.
  • [25] RASTEGARI M., ORDONEZ V., REDMON J., FARHADI A., XNOR-Net: ImageNet classification using binary convolutional neural networks, [In] Computer Vision – ECCV 2016, Leibe B., Matas J., Sebe N., Welling M. [Eds.], Lecture Notes in Computer Science, Vol. 9908, Springer, Cham, 2016, pp. 525–542, DOI:10.1007/978-3-319-46493-0_32.
  • [26] VENHUIZEN F.G., VAN GINNEKEN B., BLOEMEN B., VAN GRINSVEN M.J.J.P., PHILIPSEN R., HOYNG C., THEELEN T., SÁNCHEZ C.I., Automated age-related macular degeneration classification in OCT using unsupervised feature learning, Proceedings of SPIE 9414, 2015, article 94141I, DOI:10.1117/12.2081521.
  • [27] LEMAÎTRE G., RASTGOO M., MASSICH J., CHEUNG C.Y., WONG T.Y., LAMOUREUX E., MILEA D., MÉRIAUDEAU F., SIDIBÉ D., Classification of SD-OCT volumes using local binary patterns: experimental validation for DME detection, Journal of Ophthalmology, 2016, article 3298606, DOI:10.1155/2016/3298606.
  • [28] SIDIBÉ D., SANKAR S., LEMAÎTRE G., RASTGOO M., MASSICH J., CHEUNG C.Y., TAN G.S.W., MILEA D., LAMOUREUX E., WONG T.Y., MÉRIAUDEAU F., An anomaly detection approach for the identification of DME patients using spectral domain optical coherence tomography images, Computer Methods and Programs in Biomedicine 139, 2017, pp. 109–117, DOI:10.1016/j.cmpb.2016.11.001.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b85a1d8b-ad1d-4f80-9027-185a7b1c3d2c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.