PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Układy hybrydowe na bazie krzemionki i haloizytu do zastosowań środowiskowych i biomedycznych

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Hybrid systems based on silica and halloysite for environmental and biomedical applications
Języki publikacji
PL
Abstrakty
EN
Silica and halloysite are inorganic materials of great importance in various areas of industry. Inorganic-organic hybrid systems obtained on their basis allow for the expansion of potential applications to new directions and improve their properties in the context of possible applications. Silica is characterized by good selectivity and mechanical stability. It consists of siloxane and silanol functional groups that can be functionalized with different organic units. Halloysite is an aluminosilicate clay mineral with silica and alumina sheets. It is often characterized by tubular structure, and its internal and external surfaces can be easily functionalized. Two large areas of application for hybrid materials based on silica and halloysite are environmental protection and medicine. Herein, the exemplary materials dedicated to the adsorption of impurities and drug delivery systems are presented.
Rocznik
Strony
529--550
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • Uniwersytet im. Adama Mickiewicza w Poznaniu, Wydział Chemii, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
Bibliografia
  • [1] C. Sanchez, P. Belleville, M. Popall, L. Nicole, Chem. Soc. Rev., 2011, 40, 696.
  • [2] P. Gomez-Romero, C. Sanchez (Eds.), Functional hybrid materials. WILEY-VCH Verlag GmbH&Co. KGaA, Weinheim, 2004.
  • [3] P.K. Jal, S. Patel, B.K. Mishra, Talanta, 2004, 62, 1005.
  • [4] S. Dash, S. Mishra, S. Patel, B.K. Mishra, Adv. Colloid Interface Sci., 2008, 140, 77.
  • [5] J. Kurczewska, G. Schroeder, Sens. Actuators B: Chem., 2008, 134, 672.
  • [6] J. Kurczewska, G. Schroeder, Int. J. Mat. Res., 2010, 101, 1037.
  • [7] M. Pawlaczyk, G. Schroeder, J. Mol. Liq., 2019, 281, 176.
  • [8] J. Kurczewska, G. Schroeder, Water Environ. Res., 2010, 82, 2387.
  • [9] A.L.P. Silva, K.S. Sousa, A.F.S. Germano, V.V. Oliveira, J.G.P. Espinola, M.G. Fonseca, C. Airoldi, T. Arakaki, L.N.H. Arakaki, Colloid Surf. A, 2009, 332, 144.
  • [10] M. Tabakaci, J. Inc. Phenom. Macrocycl. Chem., 2008, 61, 53.
  • [11] J. Kurczewska, R. Pankiewicz, G. Schroeder, Cent. Eur. J. Chem., 2012, 10, 1452.
  • [12] H. Dumrul, A.N. Kursunlu, O. Kocyigit, E. Guler, S. Ertul, Desalination, 2011, 271, 92.
  • [13] M. Pawlaczyk, G. Schroeder, Solvent Extr. Ion Exch., 2020, 38, 496.
  • [14] F. Xie, X. Lin, X. Wu, Z. Xie, Talanta, 2008, 74, 836.
  • [15] J. Kurczewska, G. Schroeder, Cent. Eur. J. Chem., 2011, 8, 41.
  • [16] P. Grzesiak, J. Łukaszyk, J. Kurczewska, G. Schroeder, Przem. Chem., 2014, 93, 1181.
  • [17] P. Grzesiak, J. Łukaszyk, E. Gabała, J. Kurczewska, G. Schroeder, Pol. J. Chem. Technol., 2016, 18, 51.
  • [18] P. Grzesiak, J. Łukaszyk, T. Hłyń, E. Gabała, J. Kurczewska, G. Schroeder, Przem. Chem., 2014, 93, 1991.
  • [19] C.R. Steven, G.A. Busby, C. Mather, B. Tariq, M.L. Briuglia, D.A. Lamprou, A.J. Urquhart, M. Grant, S.V. Patwardhan, J. Mater. Chem. B, 2014, 2, 5028.
  • [20] D.Ş. Karaman, H. Kettiger, Chapter 1, Inorganic Frameworks as Smart Nanomedicines. Elsevier, 2018.
  • [21] S.W. Song, K. Hidajat, S. Kawi, Chem. Commun., 2007, 42, 4396.
  • [22] D. Lewandowski, P. Ruszkowski, A. Pińska, G. Schroeder, J. Kurczewska, PLoS ONE, 2015, 10, e0132541.
  • [23] J. Kurczewska, P. Sawicka, M. Ratajczak, M. Gajęcka, G. Schroeder, Int. J. Pharm., 2015, 486, 226.
  • [24] J. Kurczewska, D. Lewandowski, A. Olejnik, G. Schroeder, I. Nowak, Int. J. Pharm., 2014, 472, 248.
  • [25] J. Kurczewska, P. Sawicka, M. Ratajczak, M. Gajęcka, G. Schroeder, Int. J. Pharm., 2015, 496, 526.
  • [26] P. Yuan, D. Tan, F. Annabi-Bergaya, Appl. Clay Sci., 2015, 112-113, 75.
  • [27] P. Pasbakhsh, G.J. Churchman, J.L. Keeling, Appl. Clay Sci., 2013, 74, 47.
  • [28] W. Ma, H. Wu, Y. Higaki, A. Takahara, Chem. Rec., 2018, 18, 986.
  • [29] Y . Lvov, W. Wang, L. Zhang, R. Fakhrullin, Adv. Mater., 2016, 28, 1227.
  • [30] M. Massaro, R. Noto, S. Riela, Molecules, 2020, 25, 4863.
  • [31] Y. Lvov, D.G. Shchukin, H. Mohwald, R.R. Price, ACS Nano, 2008, 2, 814.
  • [32] M. Du, B. Guo, D. Jia, Polym. Int., 2010, 59, 574.
  • [33] N. Danyliuk, J. Tomaszewska, T. Tatarchuk, J. Mol. Liq., 2020, 309, 113077.
  • [34] L. Yu, H. Wang, Y. Zhang, B. Zhang, J. Liu, Environ. Sci. Nano, 2016, 3, 28.
  • [35] S. Mellouk, A. Balhakem, K. Marouf-Khelifa, J. Schott, A. Khelifa, J. Colloid Interface Sci., 2011, 360, 716.
  • [36] J. Matusik, A. Wścisło, Appl. Clay Sci., 2014, 100, 50.
  • [37] R. Li, Z. Hu, S. Zhang, Z. Li, X. Chang, Int. J. Environ. Anal. Chem., 2013, 93, 767.
  • [38] J. Wang, X. Zhang, B. Zhang, Y. Zhao, R. Zhai, J. Liu, R. Chen, Desalination, 2010, 259, 22.
  • [39] J. Kurczewska, P. Grzesiak, J. Łukaszyk, E. Gabała, G. Schroeder, Environ. Chem. Lett., 2015, 13, 319.
  • [40] J. Dai, X. Wei, Z. Cao, Z. Zhou, P. Yu, J. Pan, T. Zou, C. Li, Y. Yan, RSC Adv., 2014, 4, 7967.
  • [41] J. Kurczewska, M .Cegłowski, G. Schroeder, Appl. Clay Sci., 2020, 190, 105603.
  • [42] F. Shahamati Fadi, S. Akbari, E. Pajootan, M. Arami, Desalin. Water Treat., 2016, 57, 26222.
  • [43] J. Kurczewska, M. Cegłowski, G. Schroeder, Inter. J. Biol. Macromol., 2019, 123, 398.
  • [44] M. Massaro, C.G. Coletti, G. Lazzara, S. Guernelli, R. Noto, S. Riela, ACS Sustainable Chem. Eng. 2017, 5, 3346.
  • [45] R. Liu, K. Fu, B. Zhang, D. Mei, H. Zhang, J. Liu, J. Dispers. Sci. Technol., 2012, 33, 711.
  • [46] Q. Peng, M. Liu, J. Zheng, C. Zhou, Microporous Mesoporous Mater., 2015, 201, 190.
  • [47] M. Massaro, G. Lazzara, S. Milioto, R. Noto, S. Riela, J. Mater. Chem. B, 2017, 5, 2867.
  • [48] D. Tan, P. Yuan, F. annabi-Bergaya, D. Liu, L. Wang, H. Liu, H. He, Appl. Caly Sci., 2014, 96, 50.
  • [49] H. Lun, J. Ouyang, H. Yang, RSC Adv., 2014, 4, 44197.
  • [50] M. Liu, Y. Chang, J. Yang, Y. You, R. He, T. Chen, C. Zhou, J. Mater. Chem. B, 2016, 4, 2253.
  • [51] J. Yang, Y. Wu, Y. Shen, C. Zhou, Y.F. Li, R.R. He, M. Liu, ACS Appl. Mater. Interfaces, 2016, 8, 26578.
  • [52] J. Kurczewska, M. Cegłowski, B. Messyasz, G. Schroeder, Appl. Clay Sci., 2018, 153, 134.
  • [53] M. Massaro, S. Riela, P. Lo Meo, R. Noto, G. Cavallaro, S. Milito, R. Noto, Appl. Organomet. Chem., 2014, 28, 234.
  • [54] M. Massaro, S. Piana, C.G. Colletti, R. Noto, S. Riela, C. Baiamonte, C. Giordano, G. Pizzolanti, G. Cavallaro, S. Milioto, G. Lazzara, J. Mater. Chem. B, 2015, 3, 4074.
  • [55] M. Massaro, S. Riela, C. Baiamonte, J.L.J. Blanco, C. Giordano, P. Lo Meo, S. Milioto, R. Noto, F. Parisi, G. Pizzaolanti, G. Lazzara, RSC Adv., 2016, 6, 87935.
  • [56] J. Kurczewska, P. Pecyna, M. Ratajczak, M. Gajęcka, G. Schroeder, Saudi Pharm. J., 2017, 25, 911.
  • [57] B.A. Tas, E. Sehit, E. Tas, S. Unal, F.C. Cebeci, Y.Z. Menceloglu, H. Unal, Food Pack. Shelf Life, 2019, 20, 100300.
  • [58] M. Maruthupandy, J. Seo, Mater. Sci. Eng. C, 2019, 105, 110016.
  • [59] G. Bidecci, G. Cavallaro, F. Di Blasi, G. Lazzara, M. Massaro, S. Milito, F. Parisi, S. Riela, G. Spinelli, Carbohydr. Polym., 2016, 152, 548.
  • [60] S. Shankar, S. Kasapis, J.W. Rhim, Inter. J. Biol. Macromol., 2018, 118, 1824.
  • [61] J. Kurczewska, M. Ratajczak, M. Gajecka, Appl. Clay Sci., 2021, 214, 106270.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b859951f-0e43-4cb6-9d4e-292ae62f8497
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.