Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Fluorine-containing wastewater from the Yuncheng Sewage Treatment Plant in Heze City, Shan-dong Province was treated by coagulation and precipitation with poly aluminum sulfate, and CaO chemical precipitation-activated carbon adsorption, with a view to reducing fluoride ions concentration in the wastewater to below the discharge standard. The results showed that the optimum conditions for the coagulation-sedimentation test of poly aluminum sulfate were as follows: the dosage of poly aluminum sulfate 0.3 g/dm3, initial pH value 4.0, the removal rate of fluoride ion in the fluorine-containing wastewater reached 98.46%, and the concentration of fluoride ion was 0.462 mg/ dm3, which reached the discharge standard (1.5 mg/ dm3); The optimum conditions for the CaO chemical precipitation, and lanthanum loaded activated carbon adsorption method were as follows: the amount of CaO 20 g/ dm3, initial pH of the chemical precipitation test 8.0, the dosage of lanthanum loaded activated carbon 10 g/ dm3, and the initial pH of the adsorption test 6.0. At this time, the removal rate of fluoride ions in the fluorine-containing wastewater reached 95.81%, and the concentration of fluoride ions was 1.26 mg/ dm3, which also met the discharge standard.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
55--73
Opis fizyczny
Bibliogr. 19 poz., rys., tab.
Twórcy
autor
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
autor
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, Shandong, China
Bibliografia
- [1] BERA B., BHATTACHARJEE S., CHAMLING M., GHOSH A., SENGUPTA N., Fluoride hazard, and risk enumeration of hard rock unconfined aquifers in the extended part of Chhota Nagpur Gneissic Complex, J. Geol. Soc. India, 2021, 97, 199–209. DOI: 10.1007/S12594-021-1651-0.
- [2] THANGAVELU A., SAPNA K., PRABITHA R., Assessment of fluoride hazard in groundwater of Palghat District, Kerala. A GIS approach, Int. J. Environ. Pollut., 2019, 66 (1–3), 187–210.
- [3] DAVIS L., HANIA R., BOOMSTRA D., ROSSOUW D., CHARPIN J.F., UHLIR J., MARACEK M., Radiolytic production of fluorine gas from MSR relevant fluoride salts, Nucl. Sci. Eng., 2023, 197 (4), 633–646. DOI: 10.1080/00295639.2022.2129951.
- [4] TOYODA A., TAIRA T., A new method for treating fluorine wastewater to reduce sludge, and running costs, IEEE Trans. Semicond. Manuf., 2000, 13 (3), 305–309. DOI: 10.1109/66.857940.
- [5] KIM D., YOON M., CHUN Y.T., LEE J., Effect of fluorine–fluorine repulsive coupling on charge transport in cyclopentadithiophene-based donor–acceptor-type conjugated copolymer films, Org. Electron., 2022, 101, 106402. DOI: 10.1016/J.ORGEL.2021.106402.
- [6] MA Y., DING A., DONG X., ZHENG S., WANG T., TIAN R., HUANG H., Low-temperature resistance of fluorine rubber with modified Si-based nanoparticles, Mater. Today Commun., 2022, 33, 104947. DOI: 10.1016/J.MTCOMM.2022.104947.
- [7] TAN M., LI T., WANG Z., SHANG B., DANG J., Investigation on adsorption of sodium fluoro-aluminates on graphite by density functional theory, J. Mol. Liq., 2023, 373, 121252. DOI: 10.1016/J.MOLLIQ.2023.121252.
- [8] KOLOBKOVA E., Fluoroaluminate glasses with low phosphate content doped with Er3+/Yb3+ ions for up-conversion luminescence temperature sensors, Mater. Chem. Phys., 2022, 290, 126575. DOI: 10.1016/J.MATCHEMPHYS.2022.126575.
- [9] RUDSKOI A.I., PARSHIN S.G., RUDSKOI A I., PARSHIN S.G., Electrochemical removal of hydroxyl, and diffusible hydrogen in aluminum fluoride slags of welding flux-cored wires, Dokl. Chem., 2022, 504 (2), 118–121. DOI: 10.1134/S0012500822700033.
- [10] IRMALENY I., HIDAYAT O.T., YOLANDA Y., TOBING E.L., Comparative evaluation of the increase in enamel hardness post-external bleaching after using casein phosphopeptide amorphous calcium phosphate fluoride (CPP-ACPF), and 5% sodium fluoride (NaF) remineralizing agents, Eur. J. Dent., 2023, Jan. 30. DOI: 10.1055/S-0043-1761189.
- [11] NAIR M., PATIL R., BAHUTULE S., Comparative evaluation of hydroxyapatite fluoride, and casein phosphopeptide amorphous calcium phosphate fluoride as remineralizing agents in primary teeth using pH cycling, and single-sectioning technique, Int. J. Med. Oral Res., 2022, 7 (2), 31–35. DOI: 10.4103/IJMO.IJMO_15_22.
- [12] DESAI S., RAO D., PANWAR S., KOTHARI N., GUPTA S., An in vitro comparative evaluation of casein phosphopeptide-amorphous calcium phosphate fluoride, tricalcium phosphate, and grape seed extract on remineralization of artificial caries lesion in primary enamel, J. Clin. Pediatr. Dent., 2022, 46 (5), 72–80. DOI: 10.22514/JOCPD.2022.010.
- [13] MEKKY A.I., DOWIDAR K.M.L., TALAAT D.M., Casein phosphopeptide amorphous calcium phosphate fluoride varnish in remineralization of early carious lesions in primary dentition. Randomized clinical trial, Pediatr. Dent., 2021, 43 (1), 17–23.
- [14] SURYANI H., GEHLOT P., MANJUNATH M., Evaluation of the remineralisation potential of bioactive glass, nanohydroxyapatite, and casein phosphopeptide-amorphous calcium phosphate fluoride-based toothpastes on enamel erosion lesion. An ex vivo study, Indian J. Dent. Res., 2020, 31 (5), 670–677. DOI: 10.4103/ijdr.IJDR_735_17.
- [15] HANJOO J., KYUNG H.K., MIN-JUNG J., YOUNG-SEAK L., Fluorination effect of activated carbons on performance of asymmetric capacitive deionization, Appl. Surf. Sci., 2017, 409, 117–123. DOI: 10.1016/j.apsusc.2017.02.234.
- [16] KIM M.J., JUNG M.J., CHOI S.S., LEE Y.S., Effects of the fluorination of activated carbons on the chromium ion adsorption, Appl. Chem. Eng., 2015, 26 (1), 92098. DOI: 10.14478/ACE.2014.1126.
- [17] SEMASHKO V.V., KORABLEVA S.L., FEDOROV P.P., Lithium rare-earth fluorides as photonic materials. 2. Some physical, spectroscopic, and lasing characteristics, Inorg. Mater., 2022, 58 (5), 447–492. DOI: 10.1134/S0020168522050028.
- [18] FEDOROV P.P., SEMASHKO V.V., KORABLEVA S.L., Lithium rare-earth fluorides as photonic materials: 1. Physicochemical characterization, Inorg. Mater., 2022, 58 (3), 223–245. DOI: 10.1134/S0020168522030049.
- [19] YANG S., ERKO A., RIMAN R.E., NAVROTSKY A., Thermochemistry of stoichiometric rare earth oxyfluorides REOF, J. Am. Ceram. Soc., 2022, 105 (7), 1472–1480. DOI: 10.1111/JACE.18429.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b857ed16-0a50-4a09-bb1e-a591feee84a0