Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Purpose: The aim of the study was the processing of SiC based ceramic of SiC-Al2O3-ZrO2 composite with the various of starting composition silicon carbide (from 20% to 60 %), zircon (from 20% to 60%) and aluminum (from 0% to 10%) powders using solid and liquid sintering methods, and the physical properties and the characterization of the newly formed phases ant used experimental parameters. Design/methodology/approach: In order to analyses the reaction mechanism as well as the thermal behavior of the starting compositions, thermal analysis /TG/DTA and for the determination of nay phases, X-ray diffraction methods were used. To examine the morphology and particles morphology and the microstructures, scanning electron microspore (SEM) was used. Findings: The TG/DTA curves show endo/exothermic peaks related with the formation of carbides. The addition of Al was prevented the formation of yttrium aluminates phases. In presence of Al, the reduction and the liquid phase formation takes place. SiC acts as reducing agent. SiC-Al2O3-YSZ-ZrO2 phases were detected but at higher temperature the reaction phases were changed to ZrC, AlYZr, Y2O3 were detected as major phases in the processed samples. Practical implications: After the determination of the obtained phases, the resulting product is ceramic composite which consists of SiC-Al2O3-YSZ-ZrO2, ZrC, AlYZr, Y2O3 phases. It has potentially attractive composite where requires thermal stability in high temperature applications. Originality/value: The addition of aluminum to the mixture was facilitate the sintering process, was lowering the sintering temperature due to the high exothermic reaction which changes the reaction mechanism of the sintering from solid to liquid one.
Wydawca
Rocznik
Tom
Strony
53--58
Opis fizyczny
Bibliogr. 21 poz.
Twórcy
autor
- Department of Metallurgy and Materials Engineering, Faculty of Technology, University of Sakarya, 54187 Sakarya, Turkey
Bibliografia
- 1] K.A. Shwetz, Silicon carbide hard materials. Handbook of ceramic hard materials. Wiley-VCH. 2002.
- [2] R. Yamada, T. Taguchi, N. Igawa, Mechanical and thermal properties of 2D and 3D SiC/SiC composites, Journal of Nuclear Materials 283 (2000) 574-578.
- [3] S. Kumar, A. Kumar, K. Sampath, V.B. Prasad, J.C. Chaudhary, A.K. Gupta, G.R. Devi, Fabrication and erosion studies of C-SiC composite Jet Vanes in solid rocket motor exhaust, Journal of European Ceramic Society 31 (2011) 2425-2431.
- [4] S. Gephart, J. Signh, A. Kulkarni, Structure-property relationship for sintered SiC by field assisted sintering technique, International Journal of Refractory Metals and Hard Materials 37 (2013) 33-39.
- [5] W. Wang, J. Lian, H. Ru, Pressureless sintered SiC matrix toughened by in-situ synthesized TiB2: Process conditions and fracture toughness, Ceramic International 38 (2012) 2079-2085.
- [6] D. Sciti, A. Bellosi, Effect of additives on densification, microstructure and properties of liquidphase sintered silicon carbide, Journal of Materials Science 35 (2000) 3849-3855.
- [7] R. Neher, M. Herrrmnan, K. Brandt, J.K. Roessler, Z. Pan, Liquid phase formation in the system SiC-Al2O3- Y2O3, Journal of European Ceramic Society 31 (2011) 175-181.
- [8] H. Endo, M. Ueki, H. J. Kubo, Microstructure and mechanical properties of hot pressed SiC-TiC composites, Journal of Materials Science 26 (1991) 3769-3774.
- [9] A. Borrell, I. Alvarez, R. Torrecillas, V. G. Rocha, A. Fernandez, Micro structural design for mechanical and electrical properties of spark plasma sintered Al2O3- SiC nano composite, Materials Science Engineering 354 (2012) 693-698.
- [10] X.J. Liu, Z.Y. Huang, Q.M. Ge, X.W. Sun, L.P. Huang, Microstructure and mechanical properties of silicon nitride ceramics prepared by pressureless sintering with MgO-Al2O3-SiO2 as sintering additive, Journal of European Ceramic Society 25 (2005) 3353-3359.
- [11] A. Malingea, A. Coupeb, S. Jouannigot, Y.L. Petitcorps, R. Pailler, P. Weisbecke, Pressureless sintered silicon carbide tailored with AlN sintering agent, Journal of European Ceramic Society 32 (2012) 4419-4426.
- [12] M. C. Rodriguez, A. Munoz, A. Dom, D. Rodriguez, Effect of atmosphere and sintering time on the microstructure and mechanical properties at high temperatures of -SiC sintered with liquid phase Y2O3-Al2O3, Journal of European Ceramic Society 26 (2006) 2397-2405.
- [13] A. Noviyanto, D.H. Yoon, Metal oxide additives for the sintering of silicon carbide: Reactivity and densification, Current Applied Physic 13 (2013) 287-292.
- [14] S. Chockalingam, D. Earl, Mechanical properties of microwave sintered Si3N4-Y2O3-MgO-ZrO2 systems, Journal of European Ceramic Society 29 (2009) 2037-43.
- [15] D. Li, X. Yao, J. Chen, F. Jiang, Y. Yang, Z. Huang, X. Liu, Microstructure and reaction mechanism of SiC ceramic with mullite-zircon as a new liquid phase sintering additive system, Materials Science Engineering A 559 (2013) 510-514.
- [16] S. Rasoulia, E.T. Nassaj, S. Tabrizi, In-situ fabrication of Al2O3-SiC nano composites using B2O3 as sintering aid, Ceramics International 39 (2013) 3931-3938.
- [17] L. Cerovic, S.K. Milonjic, S.P. Zec, A comparison of solgel derived silicon carbide powders from saccharose and activated carbon, Ceramic International 21 (1995) 271- 276.
- [18] S. Baud, F. Thévenot, A. Pisch, C. Chatillon, High temperature sintering of SiC with oxide additives: I. Analysis in the SiC-Al2O3 and SiC-Al2O3-Y2O3 systems, Journal of European Ceramic Society 23 (2003) 1-8.
- [19] F. Chen, J. Xu, J. Yan, S. Tang, Effects of Y2O3 on SiC/MoSi2 composite by mechanical assistant combustion synthesis, International Journal of Refractory Metals and Hard Materials 36 (2013) 143-148.
- [20] D. Foster, D.P. Thompson, The Use of MgO as a densification aid for -SiC, Journal of European Ceramic Society 19 (1999) 2823-2831.
- [21] S. Li, Y. Zhang, J. Han, Y. Zhow, Zirconia reinforced reaction bounded silicon carbide composite: Microstructure and mechanical properties, International Journal of Refractory Metals and Hard Materials 35 (2012) 257-261.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b855600b-8de0-4bc8-9a79-01e126489ebd