PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Reconstructing seasonality using δ18O in incremental layers of human enamel : a test of the analytical protocol developed for SHRIMP IIe/MC ion microprobe

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A number of recent studies dealing with palaeoclimate and environmental reconstruction include the measurement of oxygen isotope composition of mammalian teeth. Some of them analyse a temporal sequence of the changes recorded in bioapatite from enamel layers representing the whole period of tooth development. Enamel samples display large intra-tooth δ18O variations that may reflect a seasonal fluctuation in the δ18O of local palaeoclimate parameters. The present paper provides an effective analytical protocol for sequential δ18O analysis of human teeth using SHRIMP IIe/MC ion microprobe. It is possible to follow the inner enamel layer along enamel-dentine junction on a high spatial scale in a range about 0.02 mm of spot diameter and 0.12–0.14 mm of the distance between spots. Using the methodology described herein, we can achieve an external precision for δ18O analysis <0.2‰ (1σ). The number of 60 to 90 single analyses covering the enamel layer between the incisal and apical ends is enough to obtain temporal resolution of less than one month and to document precisely seasonal fluctuation caused by local environmental and climate factors. The methodology of δ18O in situ measurements has been tested on human teeth from Tell Majnuna, a 4th millennium BCE cemetery in Northern Mesopotamia, which is a relatively arid area with high seasonal differences in precipitation and temperature. Observed pattern of δ18O variations is consistent with expected seasonal fluctuations, although the overall effect is blurred by some inertia in the enamel maturation.
Rocznik
Strony
370--383
Opis fizyczny
Bibliogr. 83 poz., rys., tab., wykr.
Twórcy
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • University of Warsaw, Institute of Archaeology, Department of Bioarchaeology, Krakowskie Przedmieście 26/28, 00-927 Warszawa, Poland
autor
  • Polish Geological Institute - National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Amiot, R., Lécuyer, C., Buffetaut, E., Escrguel, G., Fluteau, F., Martinneau, F., 2006. Oxygen isotopes from biogenic apatites suggest widespread endothermy in Cretaceous dinosaurs. Earth and Planetary Science Letters, 246: 41-54.
  • 2. Aubert, M., Williams, I.S., Boljkovac, K., Moffat, I., Moncel, M.-H., Dufour, E., Grün, R., 2012. In situ oxygen isotope micro-analysis of faunal material and human teeth using a SHRIMP II: a new tool for palaeo-ecology and archaeology. Journal of Archaeological Science, 39: 3184-3194.
  • 3. Ayliffe, L.K., Chivas, A.R., Leakey, M.G., 1994. The retention of primary oxygen isotope composition of fossil elephant skeletal phosphate. Geochimica et Cosmochimica Acta, 58: 5291-5298.
  • 4. Babu, C.A., Samah, A.A., Varikoden, H., 2011. Rainfall climatology over Middle East region and its variability. International Journal of Water Resources and Arid Environments, 1: 180-192.
  • 5. Balasse, M., 2003. Potencial biases in sampling design and interpretation of intra-tooth isotope analysis International. Journal of Osteoarcheology, 13: 3-10.
  • 6. Blaise, E., Balasse, M., 2011. Seasonality and season of birth of modern and late Neolithic sheep from south-eastern France using tooth enamel S18O analysis. Journal of Archaeological Science, 38: 3085-3093.
  • 7. Blumenthal, S.A., Cerling, T.E., Chritz, K.L., Bromage, T.G., Kozdon, R., Vall ey, J.W., 2014. Stable isotope time-serie in mammalian teeth: in situ S18O from innermost enamel layer. Geochimica et Cosmochimica Acta, 124: 223-236.
  • 8. Bowen, G.J., 2015. The Online Isotopes in Precipitation Calculator, version 2.2. http://www.waterisotopes.org
  • 9. Bowen, G.J., Wassenaar, L.I., Hobson, K.A., 2005. Global application of stable hydrogen and oxygen isotopes to wildlife forensics. Oecologia, 143: 337-348.
  • 10. Boyce, J.W., Hervig, R.L., 2005. U and Th zoning in Cerro de Mercado (Durango, Mexico) fluorapatite: insights regarding the impact of recoil distribution of 4He on (U-Th)/He Thermochronology. Chemical Geology, 219: 261-274.
  • 11. Britton, K., Grimes, V., Dau, J., Richards, M.P., 2009. Reconstructing faunal migration using intra-tooth sampling and strontium and oxygen isotope analyses a case study of modern caribou (Rangifer Tarandus granti). Journal of Archeological Science, 36: 1163-1172.
  • 12. Britton, K., Fuller, B.T., Tütken, T., Mays, S., Richards, M.P., 2015. Oxygen isotope analysis of human bone phosphate evidences weaning age in archaeological populations. American Journal of Physical Anthropology, 157: 226-241.
  • 13. Bryant, J.D., Froelich, P.N., 1995. A model of oxygen isotope fractionation in body water of largemammals. Geochimica Cosmochimica Acta, 59: 4523-4537.
  • 14. Bryant, J.D., Froelich, P.N., 1996. Oxygen isotope composition of human tooth enamel from medieval Greenland: linking climate and society: comment and reply. Geology, 24: 477-478.
  • 15. DiGangi, E.A., Moore, M.K., 2013. Research Methods in Human Skeletal Biology. Elsevier.
  • 16. Dolphin, A., Teeter, M.A., White, Ch., Longstaffe, F.J., 2016. Limiting the impact of destructive an analytical techniques through sequential microspatial sampling of the enamel from single teeth. Journal of Archeological Science: reports, 5: 537-541.
  • 17. Dupras, T.L., Schwarcz, H.P., 2001. Strangers in a strange land: stable isotope evidence for human migration in the Dakhleh Oasis, Egypt. Journal of Archaeological Sciences, 28: 1199-1208.
  • 18. Eanes, E.D., 1979. Enamel apatite: chemistry, structure and properties. Journal of Dental Research, 58: 829-836.
  • 19. Enax, J., Prymek, O., Raabe, D., Epple, H., 2012. Structure, composition, and mechanical properties of shark teeth. Journal of Structural Biology, 178: 290-299.
  • 20. Frei, D., Harlov, D., Dulski, P., Ronsbo, J., 2005. Apatite from Durango (Mexico) - a potential standard for in situ trace element analysis of phosphates. Goldschmidt Conference Abstracts 2005 Analytical Geochemistry: A79.
  • 21. Fricke, H.C., O'Neil, J.R., Lynnerup, N., 1995. Oxygen isotope composition of human tooth enamel from medieval Greenland: linking climate and society. Geology, 23: 869-872.
  • 22. Fricke, H.C., O'Neil, J.R., 1996. Inter- and intra-tooth variation in the oxygen isotope composition of mammalian tooth enamel phosphate: implications for palaeoclimatological and palaeobiological research. Palaeogeography, Palaeoclimatology, Palaeoecology, 126: 91-99.
  • 23. Fricke, H.C., Clyde, W.C., O'Neil, J.R., 1998. Intra-tooth variations in S18O (PO4) of mammalian tooth enamel as a record of seasonal variations in continental climates. Geochimica et Cosmochimica Acta, 62: 1839-1850.
  • 24. Gregoricka, L.A., 2011. Mobility, exchange and tomb membership in Bronze Age Arabia. Biochemical Investigation. Dissertation, the Ohio State University.
  • 25. Hillson, S., 1996. Dental Anthropology. Cambridge University Press, Cambridge.
  • 26. Iacumin, P., Bocherens, H., Mariotti, A., Longinelli, A., 1996. Oxygen isotope analyses of co-existing carbonate and phosphate in biogenic apatite: a way to monitor diagenetic alteration of bone phosphate? Earth and Planetary Science Letters, 142: 1-6.
  • 27. Ickert, R.B., Hiess, J., Williams, I.S., Holden, P., Ireland, T.R., Lanc, P., Schram, N., Foster, J.J., Clement, S.W., 2008. Determining high precision, in situ, oxygen isotope ratios with a SHRIMP II: analyses of MPI-DING silicate-glass reference materials and zircon from contrasting granites. Chemical Geology, 257: 114-128.
  • 28. Ireland, T.R.S., Clement, S.W., Compston, W., Foster, J.J., Holden, P., Jenkins, B., Lanc, P., Schram, N., Williams, I.S., 2008. Development of SHRIMP. Australian Journal of Earth Sciences, 55: 937-954.
  • 29. Jay, M., 2009. Breastfeeding and weaning behaviour in archaeological populations: evidence from the isotopic analysis of skeletal materials. Childhood in the Past, 2: 163-178.
  • 30. Kattan, Z., 1997. Chemical and environmental isotope study of precipitation in Syria. Journal of Arid Environments, 35: 601-615.
  • 31. Kita, N.T., Ushikubo, T., Fu, B., Valley, J.W., 2009. High precision SIMS oxygen isotope analysis and the effect of sample topography. Chemical Geology, 264: 43-57.
  • 32. Kohn, M.J., Cerling, T.E., 2002. Stable isotope composition of biological apatite. Reviews in Mineralogy and Geochemistry, 48: 455-488.
  • 33. Kohn, M.J., Schoeninger, M.J., Valley, J., 1998. Variability in oxygen isotope composition of herbivore teeth: reflections of seasonality or developmental physiology. Chemical Geology, 152: 97-112.
  • 34. Kohn, M.J., Miselis, J.L., Fremd, T.J., 2002. Oxygen isotope evidence for progressive uplift of the Cascade Range, Oregon. Earth and Planetary Science Letters, 204: 151-165.
  • 35. Krzeminska, E., Czupyt, Z.J., 2015. The 518O record explored within a dental targets by SHRIMP IIe/MC. Mineralogical Magazine - Goldschmidt 2015; Abstracts: 1701.
  • 36. Kuzucuoğlu, C., 2007. Climatic and Environmental trends during the third Millenium B.B. in Upper Mesopotamia. In: Sociétés humaines et changement climatique à la fin du troisième millénaire: une crise a-t-elle eu lieu en Haute Mésopotamie?, Actes du Colloque de Lyon (5-8 décembre 2005), édités par Catherine Kuzucuoğlu et Catherine Marro. Institut Franęais d’Etiudes Anatolies Georges Dumezil, 2007: 459-480.
  • 37. Lécuyer, C., Grandjean, P., Barrat, J.-A., Nolvak, J., Emig, C., Paris, F., Robardet, M., 1998. 518O and REE contents of phosphatic brachiopods: a comparison between modern and lower Paleozoic populations. Geochimica et Cosmochimica Acta, 62: 2429-2436.
  • 38. Lee-Thorp, J.A., van der Merwe, N.J., 1991. Aspects of the chemistry of modern and fossil biological apatites. Journal of Archaeological Science, 18: 343-354.
  • 39. LeGeros, R.Z., Trautz, O.R., Klein, E., LeGeros, J.P., 1969. Two types of carbonate substitution in the apatite structure. Experimentia: 25: 5-7.
  • 40. Lightfoot, E.C., O'Connell, T.C., 2016. On the use of biomineral oxygen isotope data to identify human migrants in the archaeological record: intra-sample variation, statistical methods and geographical considerations. Edited by Luca Bondioli. PLOS ONE, 11: e0153850.
  • 41. Lionello, P., Malanotte-Rizzoli, P., Boscolo, R., 2006. Mediterranean Climate Variability. Elsevier, Amsterdam.
  • 42. Longinelli, A., 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta, 48: 385-390.
  • 43. Luz, B., Kolodny, Y., 1985. Oxygen isotope variations in phosphate of biogenic apatites, 4. Mammal teeth and bones. Earth and Planetary Science Letters, 75: 29-36.
  • 44. Luz, B., Kolodny, Y., Horowitz, M., 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta, 48: 1689-1693.
  • 45. McMahon, A., Sołtysiak, A., Weber, J., 2011. Late Chalcolithic mass graves at Tell Brak, Syria, and violent conflict during the growth of early city-states. Journal of Field Archaeology, 36: 201-220.
  • 46. Nanci, A., 2013. Ten Cate’s Oral Histology: Development, Structure, and Function. Elsevier.
  • 47. O'Neil, J.R., Reinhard, R.E., Blake, E.R., 1994. A rapid and precise method of oxygen isotope analysis of biogenic phosphate. Israel Journal of Earth Science, 43: 203-212.
  • 48. Pan, Y., Fleet, M.E., 2002. Compositions of the apatite-group minerals: substitution mechanisms and controlling factors. Reviews in Mineralogy and Geochemistry, 48: 13-49.
  • 49. Passey, B.H., Cerling, T.E., 2002. Tooth enamel mineralization in ungulates: implications for recovering a primary isotopic time-series. Geochimica et Cosmochimica Acta, 66: 3225-3234.
  • 50. Peel, M. C., Finlayson, B. L., McMahon, T. A., 2007. "Updated world map of the Köppen-Geiger climate classification". Hydrology and Earth System Sciences, 11: 1633-1644.
  • 51. Pellegrini, M., Pouncett, J., Jay, M., Pearson, M.P., Michael, P., Richards, M.R., 2016. Tooth enamel oxygen “isoscapes” show a high degree of human mobility in prehistoric Britain. Scientific Reports, 6: 34986.
  • 52. Pflug, K.P., Schuster, K.-D., Pichotka, J.P., Forstel, H., 1979. Fractionation effects of oxygen isotopes inmammals. In: Stable Isotopes: Proceedings of the Third International Conference (eds. E.R. Klein and P.D. Klein): 553-561. Academic Press, New York.
  • 53. Reid, D.J., Dean, M.C., 2000. The timing of linear hypoplasias on human anterior teeth. American Journal of Physical Anthropology, 113: 135-139.
  • 54. Rigo, M., Trotter, J.A., Preto, N., Williams, I.S., 2012. Oxygen isotopic evidence for Late Triassimonsoonal upwelling in the northwestern Tethys. Geology, 40: 515-518.
  • 55. Robinson, C., Weatherell, J.A., Hallsworth, A.S., 1971. Variation in composition of den-al enamel within thin ground tooth sections. Caries Research, 5: 44-57.
  • 56. Różański, K., Araguas-Araguas, L., Gonfiantini, R., 1993. Isotopic patterns in modern global precipitation. American Geophysical Union Geophysical Monograph, 78: 1-36.
  • 57. Schoeninger, M.J., 1995. Stable isotope studies in human evolution. Evolutionary Anthropology, 4: 83-89.
  • 58. Shahack-Gross, R., Tchernov, E., Luz, B., 1999. Oxygen isotopic composition of mammalian skeletal phosphate from the Natufian period, Hayonim cave, Israel: diagenesis and paleoclimate. Geoarcheology, 14: 1-13.
  • 59. Simmer, J.P., Fincham, A.G., 1995. Molecular mechanisms of dental enamel formation. Critical Reviews in Oral Biology and Medicine, 6: 84-108.
  • 60. Sønju Clasen, A.B., Ruyter, I.E., 1997. Quantitative determination of type A and type B carbonate in human deciduous and permanent enamel by means of Fourier transform infrared spectrometry. Advances in Dental Research, 11: 523-527.
  • 61. Sołtysiak, A., 2010. Death and Decay at the Dawn of the City. Interpretation of Human Bone Deposits at Tell Majnuna, Areas MTW, EM and EMS. Instytut Archeologii, Warszawa,
  • 62. Sponheimer, M., Lee-Thorp, J.A., 1999. Oxygen isotopes in enamel carbonate and their ecological significance. Journal of Archeological Science, 26: 723-728.
  • 63. Stevens, R.E., Balasse, M., O'Connell, T.C., 2011. Intra-tooth oxygen isotope variation in a known population of red deer: implications for past climate and seasonality reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology, 301: 64-74.
  • 64. Stuart-Williams, H.L.Q., Schwarcz, H.P., 1997. Oxygen isotopic determination of climatic variation using phosphate from beaver bone, tooth enamel and dentine. Geochimica et Cosmochimica Acta, 61: 2539-2550.
  • 65. Sun, Y., Joachimski, M., Wiedenbeck, M., 2015. Gem-quality apatite as reference material for oxygen isotope analysis of biogenic apatite by the secondary ion mass spectrometry. Mineralogical Magazine - Goldschmidt 2015, Abstracts: 3033.
  • 66. Tafforeau, P., Bentaleb, I., Jaeger, J.-J., Martin, C., 2007. Nature of laminations and mineralization in rhinoceros enamel using histology and X-ray synchrotron microtomography: potential implications for palaeoenvironmental isotopic studies. Palaeogeography, Palaeoclimatology, Palaeoecology, 246: 206-227.
  • 67. Tian, X.S., Zhu, C., Shui, T., 2013. Diets, eco-environments and seasonal variations recorded in mammalian tooth enamel from Shunshanij site, Sihony County, Jiangsu Province, China. Chinese Science Bulletin, 58: 3788-3795.
  • 68. Tomczyk, J., Wierzbowski, H., Zalewska M., 2016. Stable isotope record of human and sheep enamel carbonate from the Ancient Middle Euphrates Valley (Syria). International Journal of Osteoarcheology, 26: 599-609.
  • 69. Trayler, R.B., Kohn, M.J., 2017. Tooth enamel maturation reequilibrates oxygen isotope compositions and supports simple sampling methods. Geochimica et Cosmochimica Acta, 198: 32-47.
  • 70. Trotter, J.A., Williams, I.S., Barnes, C.R., Lecuyer, C., Nicoll, R.S., 2008. Did cooling oceans trigger Ordovician biodiversification? Evidence from conodont thermometry. Science, 321: 550-554.
  • 71. Trotter, J.A., Williams, I.S., Nicora, A., Mazza, M., Rigo, M., 2015. Long-term cycles of Triassic climate change: a new 518O record from conodont apatite. Earth and Planeary Science Letters, 415: 165-174.
  • 72. Tsutaya, T., Yoneda, M., 2015. Reconstruction of breastfeeding and weaning practices using stable isotope and trace element analyses: a review. American Journal of Physical Anthropology, 156: 2-21.
  • 73. Weiss, H., 1986. The origins of Tel Leilan and the conquest of space in Third Millennium Mesopotamia In: The Origins of Cities in Dry Farming Syria and Mesopotamia in the Third Millennium (ed. B.C.H. Weiss): 71-108. Four Quarters Publishing Co., Guilford, Conn.
  • 74. Wheeley, J.R., Smith, M.P., Boomer, I., 2012. Oxygen isotope variability in conodonts: implications for reconstructing Palaeozoic palaeoclimates and palaeoceanography. Journal of the Geological Society, 169: 239-250.
  • 75. White, C., Longstaffe, F.J., Law, K.R., 2004. Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth. Journal of Archaeological Science, 31: 233-250.
  • 76. White, C.D., Spence, M.W., Stuart-Williams, H.Q.L., Schwarcz, H.P., 1998. Oxygen isotopes and the identification of geographical origins: the Valley of Oaxaca versus the Valley of Mexico. Journal of Archaeological Science, 25: 643-655.
  • 77. Wiedemann-Bidlack, F.B., Colman, A.S., Fogel, M.L., 2008. Phosphate oxygen isotope analysis on microsamples of bio-apatite: removal of organic contamination and minimization of sample size. Rapid Communication Mass Spectrometry, 22: 1807-1816.
  • 78. Williams, I.S., Trotter, J.A., Rigo, M., Barnes, C.R., 2013. Analysing conodont S18O by SIMS. Mineralogical Magazine, 77: 2499.
  • 79. Wright, L.E., 2013. Examining childhood diets at Kaminljuyu, Guatemala, through stable isotopic analysis of sequential enamel microsamples. Archaeometry, 55: 113-133.
  • 80. Zakhem, B.A., Hafez, R., 2010. Climatic factors controlling chemical and isotopic characteristics of precipitationin Syria. Hydrological Process, 24: 2641-2654.
  • 81. Zazzo, A., Lecuyer, C., Mariotti, A., 2004. Experimentally-controlled carbon and oxygen isotope exchange between bioapatites and water under inorganic and microbially-mediated conditions. Geochimica et Cosmochimica Acta, 68: 1-12.
  • 82. Zazzo, A., Bendrey, R., Vella, D., Moloney, A.P., Monahan, F.J., Schmidt, O., 2012. A refined sampling strategy for intra-tooth stable isotope analysis of mammalian enamel. Geochimica et Cosmochimica Acta, 84: 1-13.
  • 83. Żarski, M., Winter, H., Nadachowski, A., Urbanowski, M., Socha, P., Kenig, K., Marcinkowski, B., Krzemińska, E., Stefaniak, K., Nowaczewska, W., Marciszak, A., 2017. Stratigraphy and palaeoenvironment of Stajna Cave (southern Poland) with regard to habitation of the site by Neanderthals. Geological Quarterly, 61 (2): 350-369.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8516c3e-5a64-47b0-ac12-d51c1a549549
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.