Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The currently used criterion of maximum transverse diameter for the Abdominal Aortic Aneurysm treatment has some limitations. Attempts to create individualized, therapeutic strategies are being conducted, including biomechanical assessment of rupture risk of an aneurysm based on the Finite Element Analysis of the geometric models. The usual approach is to use the results of the computed tomography imaging to build a three-dimensional model of the aneurysm. The FEA is then performed and the resulting stress is analysed to estimate the risk of rupture. Although such an approach brings significant improvements over the traditional maximum diameter method, it is difficult to ensure the validity of the assumptions made. This paper presents a method to evaluate the correctness of such an approach. The emergence of gated Magnetic Resonance Imaging allows registering aneurysm in both the systolic and diastolic phase of cardiac cycle. The corresponding geometric models are built and the results of the FEA applied to the diastolic model are compared with the actual deformation of the aneurysm observed in the patient's body. Thus, it is possible to verify whether the individualized diagnostic approach applied to a specific patient was correct. The geometry of the reference and the analysed models were compared using the Differential Surface Area Method. The average geometry error equals 1.65%. In the best case the error amounts to 1.04%, in the worst to 3.00%. The obtained results provide evidence that the Finite Element Analysis is a reliable method and can be potentially used for individualized diagnostics and treatment.
Wydawca
Czasopismo
Rocznik
Tom
Strony
544--555
Opis fizyczny
Bibliogr. 65 poz., rys., tab., wykr.
Twórcy
autor
- Institute of Control and Information Engineering, Faculty of Electrical Engineering, Poznan University of Technology, 60-965 Poznan ul. Piotrowo 3a, Poland
autor
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
autor
- Institute of Control and Information Engineering, Faculty of Electrical Engineering, Poznan University of Technology, Poznan, Poland
autor
- I'st Clinic of Cardiology, Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
autor
- I'st Clinic of Cardiology, Department of Cardiology, Poznan University of Medical Sciences, Poznan, Poland
autor
- Department of General Radiology, Poznan University of Medical Sciences, Poznan, Poland
autor
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
autor
- Department of General and Vascular Surgery, Poznan University of Medical Sciences, Poznan, Poland
Bibliografia
- [1] Johnston KW, Rutherford RB, Tilson MD, Shah DM, Hollier L, Stanley JC. Suggested standards for reporting on arterial aneurysms. Subcommittee on Reporting Standards for Arterial Aneurysms, Ad Hoc Committee on Reporting Standards, Society for Vascular Surgery and North American Chapter, International Society for Cardiovascular Surgery. J Vasc Surg 1991;13(3):452–8.
- [2] Gillum RF. Epidemiology of aortic aneurysm in the United States. J Clin Epidemiol 1995;48(11):1289–98.
- [3] Brown LC, Powell JT. Risk factors for aneurysm rupture in patients kept under ultrasound surveillance. UK Small Aneurysm Trial Participants. Ann Surg 1999;230(3):289–97.
- [4] Nicholls SC, Gardner JB, Meissner MH, Johansen KH. Rupture in small abdominal aortic aneurysms. J Vasc Surg 1998;28(5):884–8.
- [5] Schermerhorn M, Zwolak R, Velazquez O, Makaroun M, Fairman R, Cronenwett J, et al. Ultrasound screening for abdominal aortic aneurysm in medicare beneficiaries. Ann Vasc Surg 2008;22(1):16–24.
- [6] Shum J, DiMartino ES, Goldhammer A, Goldman DH, Acker LC, Patel G, et al. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Med Phys 2010;37:638–48. http://dx.doi.org/10.1118/1.3284976.
- [7] Leung JH, Wright AR, Cheshire N, Crane J, Thom SA, Hughes AD, et al. Fluid structure interaction of patient specific abdominal aortic aneurysms: a comparison with solid stress models. BioMed Eng OnLine 2006;20065:33. http://dx.doi.org/10.1186/1475-925X-5-33.
- [8] Ricotta JJ, Pagan J, Xenos M, Alemu Y, Einav S, Bluestein D. Cardiovascular disease management: the need for better diagnostics. Med Biol Eng Comput 2008;46(11):1059–68. http://dx.doi.org/10.1007/s11517-008-0416-x.
- [9] Karatolios K, Wittek A, Nwe TH, Bihari P, Shelke A, Josef D, et al. Method for aortic wall strain measurement with three-dimensional ultrasound speckle tracking and fitted finite element analysis. Ann Thor Surg 2013;96(5):1664–71.
- [10] Fabiani I, Riccardo Pugliese N, Santini V, Conte L, Di Bello V. In: Dr Umashankar Lakshmanadoss, editor. Speckletracking imaging, principles and clinical applications: a review for clinical cardiologists, echocardiography in heart failure and cardiac electrophysiology. InTech; 2016. http://dx.doi.org/10.5772/64261. Available from: https://www.intechopen.com/books/echocardiographyin-heart-failure-and-cardiac-electrophysiology/speckletracking-imaging-principles-and-clinical-applications-areview-for-clinical-cardiologists.
- [11] Nguyen VL, Leiner T, Hellenthal FA, Backes WH, Wishaupt MC, van der Geest RJ, et al. Abdominal aortic aneurysms with high thrombus signal intensity on magnetic resonance imaging are associated with high growth rate. Eur J Vasc Endovasc Surg 2014;48:676–84.
- [12] Richards JM, Semple SI, MacGillivray TJ, Gray C, Langrish JP, Williams M, et al. Abdominal aortic aneurysm growth predicted by uptake of ultrasmall superparamagnetic particles of iron oxide: pilot study. Circ Cardiovasc Imaging 2011;4:274–81.
- [13] Veldhoen S, Behzadi C, Derlin T, Rybczinsky M, von Kodolitsch Y, Sheikhzadeh S, et al. Exact monitoring of aortic diameters in Marfan patients without gadolinium contrast: intraindividual comparison of 2D SSFP imaging with 3D CE-MRA and echocardiography. Eur Radiol 2015;25:872–82.
- [14] Zhu C, Haraldsson H, Faraji F, Owens C, Gasper W, Ahn S, et al. Isotropic 3D black blood MRI of abdominal aortic aneurysm wall and intraluminal thrombus. Magn Reson Imaging 2016;34:18–25.
- [15] Sumner DS, Hokanson DE, Strandness DEJ. Stress strain characteristics and collagen elastin content of abdominal aortic aneurysms. Surg Gynecol Obstet 1970;130:459–66.
- [16] Kazi M, Thyberg J, Religa P, Roy J, Eriksson P, Hedin U, et al. Influence of intraluminal thrombus on structural and cellular composition of abdominal aortic aneurysm wall. J Vasc Surg 2003;38:1283–92.
- [17] Raghavan ML, Kratzberg J, Castro de Tolosa EM, Hanaoka MM, Walker P, da Silva ES. Regional distribution of wall thickness and failure properties of human abdominal aortic aneurysm. J Biomech 2006;39:3010–6.
- [18] Mohammad NF, Nassriq MN, Saidatul A. Analysis of blood flow, pressure and velocity in a stented abdominal aortic aneurysm model. Proceedings of International Conference on Applications and Design in Mechanical Engineering (iCADME); 2009.
- [19] Raut SS, Jana A, De Oliveira V, Muluk SC, Finol EA. The importance of patient-specific regionally varying wall thickness in abdominal aortic aneurysm biomechanics. J Biomech Eng 2013;135(8):81010.
- [20] Raghavan ML, Vorp DA, Federle MP, Makaroun MS, Webster MW. Wall stress distribution on three-dimensionally reconstructed models of human abdominal aortic aneurysm. J Vasc Surg 2000;31(4):760–9.
- [21] Doyle BJ, Cloonan AJ, Walsh MT, Vorp DA, McGloughlin TM. Identification of rupture locations in patient-specific abdominal aortic aneurysms using experimental and computational techniques. J Biomech 2010;43(7):1408–16.
- [22] Wang DHJ, Makaroun MS, Webster MW, Vorp DA. Effect of intraluminal thrombus on wall stress in patient-specific models of abdominal aortic aneurysm. J Vasc Surg 2002;36 (3):598–604.
- [23] Gasser TC, Auer M, Labruto F, Swedenborg J, Roy J. Biomechanical Rupture Risk Assessment of abdominal aortic aneurysm: model complexity versus predictability of finite element simulations. Eur J Vasc Endovasc Surg 2010;40(2):176–85.
- [24] Joldes GR, Miller K, Wittek A, Doyle B. A simple, effective and clinically applicable method to compute abdominal aortic aneurysm wall stress. Mech Behav Biomed Mater 2016;58:139–48.
- [25] Zhu C, Tian B, Leach JR, Liu Q, Lu J, Chen L, et al. Noncontrast 3D black blood MRI for abdominal aortic aneurysm surveillance: comparison with CT angiography. Eur Radiol 2017;27:1787–94.
- [26] Raghavan ML, Vorp DA. Toward a biomechanical tool to evaluate rupture potential of abdominal aortic aneurysm: identification of a finite strain constitutive model and evaluation of its applicability. J Biomech 2000;33(4):475–82.
- [27] Thubrikar MJ, Al-Soudi J, Robicsek F. Wall stress studies of abdominal aortic aneurysm in a clinical model. Ann Vasc Surg 2001;15(3):355–66.
- [28] O'Leary SA, Healey DA, Kavanagh EG, Walsh MT, McGloughlin TM, Doyle BJ. The biaxial biomechanical behaviour of abdominal aortic aneurysm tissue. Ann Biomed Eng 2014;42(12):2440–50.
- [29] Wang DH, Makaroun M, Webster MW, Vorp DA. Mechanical properties and microstructure of intraluminal thrombus from abdominal aortic aneurysm. J Biomech Eng 2001;123 (6):536–9.
- [30] Van Dam EA, Dams SD, Peters GWM, Rutten MCM, Schurink GWH, Buth J, et al. Non-linear viscoelastic behavior of abdominal aortic aneurysm thrombus. Biomech Model Mechanobiol 2008;7(2):127–37.
- [31] Vande Geest JP, Sacks MS, Vorp DA. A planar biaxial constitutive relation for the luminal layer of intra-luminal thrombus in abdominal aortic aneurysms. J Biomech 2006;39(13):2347–54.
- [32] Huang H, Virmani R, Younis H, Burke AP, Kamm RD, Lee RT. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 2001;103(8):1051–6.
- [33] Speelman L, Bohra A, Bosboom EMH, Schurink GWH, van de Vosse FN, Makaroun MS, et al. Effects of wall calcifications in patient-specific wall stress analyses of abdominal aortic aneurysms. J Biomech Eng 2007;129(1):105–9.
- [34] Maier A, Gee MW, Reeps C, Eckstein H-H, Wall WA. Impact of calcifications on patient-specific wall stress analysis of abdominal aortic aneurysms. Biomech Model Mechanobiol 2010;9(5):511–21.
- [35] Marra SP, Daghlian CP, Fillinger MF, Kennedy FE. Elemental composition, morphology and mechanical properties of calcified deposits obtained from abdominal aortic aneurysms. Acta Biomater 2006;2(5):515–20.
- [36] Conlisk N, Forsythe RO, Hollis L, Doyle BJ, McBride OMB, Robson JMJ, et al. Exploring the biological and mechanical properties of abdominal aortic aneurysm using USPIO MRI and peak tissue stress: a combined clinical and finite element study. J Cardiovasc Trans Res 2017 [online].
- [37] Doyle BJ, Callanan A, Walsh M, Grace P, McGloughlin T. A finite element analysis rupture index (FEARI) as an additional tool for abdominal aortic aneurysm rupture prediction. Vasc Disease Prev 2009;6:114–21.
- [38] Vorp DA, Raghavan ML, Webster MW. Mechanical wall stress in abdominal aortic aneurysm: influence of diameter and asymmetry. J Vasc Surg 1998;27(4):632–9.
- [39] Martufi G, Lindquist Liljeqvist M, Sakalihasan N, Panuccio G, Hultgren R, Roy J, et al. Local diameter, wall stress and thrombus thickness influence the local growth of abdominal aortic aneurysms. J Endovasc Ther 2016;23 (6):957–66.
- [40] Liljeqvist ML, Hultgren R, Gasser T, Roy J. Gender, smoking, body size and aneurysm geometry influence the biomechanical rupture risk of abdominal aortic aneurysm as estimated by finite element analysis. J Vasc Surg 2017;65:1014–21.
- [41] Javadzadegan A, Simmons A, Behnia M, Barber T. Computational modelling of abdominal aortic aneurysm: effect of suprarenal vs. infrarenal positions. Eur J Mech B: Fluids 2017;61:112–24.
- [42] Bal-Theoleyre L, Meyrignac O, Zadro C, Gaudry M, De Masi M, Saint-Lebes B, et al. Value of combined volumetric and computational fluid dynamics analysis in predicting abdominal aortic aneurysms rapid growth. Eur Heart J 2017;38 [online].
- [43] Lin S, Han X, Bi Y, Ju S, Gu L. Fluid–structure interaction in abdominal aortic aneurysm: effect of modelling techniques. BioMed Res Int 2017 [online].
- [44] Sheidaei A, Hunley SC, Zeinali-Davarani S, Raguin LG, Beak S. Simulation of abdominal aortic aneurysm growth with updating hemodynamic load using a realistic geometry. Med Eng Phys 2011;33(1):80–8.
- [45] Kung EO, Les AS, Medina F, Wicker RB, McConnell MV, Taylor CA. In vitro validation of finite-element model of AAA: hemodynamics incorporating realistic outlet boundary conditions. J Biomech Eng 2011;133(4) [online].
- [46] Erhart P, Roy J, Jean-Paul PM, de Vries, Lindquist Liljeqvist M, Grond-Ginsbach C, et al. Prediction of rupture sites in abdominal aortic aneurysms after finite element analysis. J Endovasc Ther 2016;23(1):115–20.
- [47] Hyhlik-Dürr A, Krieger T, Geisbüsch P, Kotelis D, Able T, Böckler D. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. J Endovasc Ther 2011;18(3):289–98.
- [48] Auer M, Gasser TC. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. IEEE Trans Med Imaging 2010;29(4):1022–8.
- [49] Auer M, Stollberger R, Regitnig P, Ebner F, Holzapfel GA. 3-D reconstruction of tissue components for atherosclerotic human arteries based on high-resolution MRI. IEEE Trans Med Imaging 2006;25(3):345–57.
- [50] De Bruijne M, Van Ginneken B, Viergever MA, Niessen WJ. Interactive segmentation of abdominal aortic aneurysms in CTA images. Med Image Anal 2004;8(2):127–38.
- [51] Sethi G, Saini BS. Computer aided diagnosis system for abdomen diseases in computed tomography images. Biocybern Biomed Eng 2016;36(1):42–55.
- [52] De Putter S, Wolters BJ, Rutten MC, Breeuwer M, Gerritsen FA, Van De Vosse FN. Patient-specific initial wall stress in abdominal aortic aneurysm with a backward incremental method. J Biomech 2007;40(5):1081–90.
- [53] Mohan D, Melvin JW. Failure properties of passive human aortic tissue II – biaxial tension tests. J Biomech 1982;16(1): 31–44.
- [54] Sacks MS, Vorp DA, Raghavan ML, Federle MP, Webster MW. In vivo three-dimensional surface geometry of abdominal aortic aneurysms. Ann Biomed Eng 1999;27(4):469–79.
- [55] He CM, Roach MR. The composition and mechanical properties of abdominal aortic aneurysms. J Vasc Surg 1994;20(1):6–13.
- [56] Raghavan ML, Webster MW, Vorp DA. Ex vivo biomechanical behavior of abdominal aortic aneurysm: assessment using a new mathematical model. Ann Biomed Eng 1996;24(5):573–82.
- [57] Vorp DA. Biomechanics of abdominal aortic aneurysm. J Biomech 2007;40(9):1887–902.
- [58] Bols J, Degroote J, Trachet B, Verhegghe B, Segers P, Vierendeelsa J. A computational method to assess the in vivo stresses and unloaded configuration of patient specific blood vessels. J Comput Appl Math 2013;246: 10–7.
- [59] Moll FL, Powell JT, Fraedrich G, Verzini F, Haulon S, Waltham M, et al. Management of abdominal aortic aneurysms: clinical practice guidelines of the European Society for Vascular Surgery. Eur J Vasc Endovasc Surg 2011;41:1–58.
- [60] Powell JT, Brady AR, Brown LC, Forbes JF, Fowkes FGR, Greenhalgh RM, et al. Mortality results for randomised controlled trial of early elective surgery or ultrasonographic surveillance for small abdominal aortic aneurysms. The UK Small Aneurysm Trial Participants. Lancet 1998;352 (9141):1649–55.
- [61] Maier A, Gee MW, Reeps C, Pongratz J, Eckstein HH, Wall WA. A comparison of diameter, wall stress, and rupture potential index for abdominal aortic aneurysm rupture risk prediction. Ann Biomed Eng 2010;38(10):3124–34.
- [62] Li ZY, Sadat U, U-King-Im J, Tang TY, Bowden DJ, Hayes PD, et al. Association between aneurysm shoulderstress and abdominal aortic aneurysm expansion: a longitudinal follow-up study. Circulation 2010;122(18):1815–22.
- [63] Venkatasubramaniam AK, Fagan MJ, Mehta T, Mylankal KJ, Ray B, Kuhan G, et al. A comparative study of aortic wall stress using finite element analysis for ruptured and nonruptured abdominal aortic aneurysms. Eur J Vasc Surg 2004;28(2):168–76.
- [64] Klein A, Oostveen LJ, Greuter MJ, Hoogeveen Y, Kool LJ, Slump CH, et al. Detectability of motions in AAA with ECGgated CTA: a quantitative study. Med Phys 2009;36(10): 4616–24.
- [65] Doyle B, Miller K, Newby DE, Hoskins PR. Commentary: Computational biomechanics-based rupture prediction of abdominal aortic aneurysm. J Endovasc Ther 2016;23(1): 121–4.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b84585a1-908d-43cd-87dd-5156e053de5c