Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The endovascular stent implantation is a significant and efficacious cardiovascular interventional treatment. However, the underlying mechanisms behind in-stent neoarteriosclerosis and restenosis following the intervention remain unclear. Our hypothesis posits that stent implantation may impact the transportation of low-density lipoproteins (LDL) within the host artery, thereby disrupting its concentration distribution and leading to adverse clinical events. To validate this hypothesis, we conducted a numerical investigation to examine the influence of stenting on LDL distribution, utilizing a lumen–wall model based on the coronary artery. The findings of the study suggest that the introduction of an implanted stent can disrupt blood flow and result in an abnormal accumulation of lipids on the inner surface of the arterial wall, particularly in the vicinity of the strut protrusion. Additionally, improper stent implantation, characterized by thick struts, reduced spacing between struts, and non-streamlined struts can exacerbate the local mechanical conditions of the host artery and contribute to a relatively high concentration of low-density lipoprotein (LDL) near the stent strut. In summary, the presence of a stent in the artery leads to an elevated LDL concentration both within the stented segment and downstream, potentially leading to adverse consequences.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
13--23
Opis fizyczny
Bibliogr. 39 poz., tab., wykr.
Twórcy
autor
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
autor
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
autor
- School of Mechanical Engineering, Jiangsu University of Technology, Changzhou Jiangsu, China.
autor
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
autor
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology; Shanghai Research Institute of Stomatology. Shanghai, China.
autor
Bibliografia
- [1] BALOSSINO R., GERVASO F., MIGLIAVACCA F., DUBINI G., Effects of different stent designs on local hemodynamics in stented arteries, J. Biomech., 2008, 1053–1061.
- [2] BEIER S., ORMISTON J., WEBSTER M., CATER J., NORRIS S., MEDRANO-GRACIA P., Hemodynamics in Idealized Stented Coronary Arteries: Important Stent Design Considerations, Ann. Biomed. Eng., 2016, 315–329.
- [3] DENG X., MAROIS Y., HOW T., MERHI Y., KING M., GUIDOIN R., KARINO T., Luminal surface concentration of lipoprotein (LDL) and its effect on the wall uptake of cholesterol by canine carotid arteries, J. Vasc. Surg., 1995, 135–145. 22 Z. FAN et al.
- [4] FARB A., BURKE A.P., KOLODGIE F.D., VIRMANI R., Pathological mechanisms of fatal late coronary stent thrombosis in humans, Circulation, 2003, 1701–1706.
- [5] FOIN N., LEE R.D., TORII R., GUITIERREZ-CHICO J.L., MATTESINI A., NIJJER S., Impact of stent strut design in metallic stents and biodegradable scaffolds, Int. J. Cardiol., 2014, 800–808.
- [6] GHARLEGHI R., WRIGHT H., LUVIO V., JEPSON N., LUO Z., SENTHURNATHAN A., A multi-objective optimization of stent geometries, J. Biomech., 2021, 110575.
- [7] GRADUS-PIZLO I., BIGELOW B., MAHOMED Y., SAWADA S.G., RIEGER K., FEIGENBAUM H., Left anterior descending coronary artery wall thickness measured by high-frequency transthoracic and epicardial echocardiography includes adventitia, Am. J. Cardiol., 2003, 27–32.
- [8] HYUN S., KLEINSTREUER C., ARCHIE J.P. Jr., Computational particle-hemodynamics analysis and geometric reconstruction after carotid endarterectomy, Comput. Biol. Med., 2001, 365–384.
- [9] IQBAL J., GUNN J., SERRUYS P.W., Coronary stents: historical development, current status and future directions, Br. Med. Bull., 2013, 193–211.
- [10] JAFFE R., STRAUSS B.H., Late and very late thrombosis of drug-eluting stents: evolving concepts and perspectives, J. Am. Coll. Cardiol., 2007, 119–127.
- [11] JONER M., KOPPARA T., BYRNE R.A., CASTELLANOS M.I., LEWERICH J., NOVOTNY J., Neoatherosclerosis in Patients with Coronary Stent Thrombosis: Findings from Optical Coherence Tomography Imaging (A Report of the PRESTIGE Consortium), JACC Cardiovasc. Interv., 2018, 1340–1350.
- [12] KARNER G., PERKTOLD K., Effect of endothelial injury and increased blood pressure on albumin accumulation in the arterial wall: a numerical study, J. Biomech., 2000, 709–715.
- [13] KIM H.J., VIGNON-CLEMENTEL I.E., COOGAN J.S., FIGUEROA C.A., JANSEN K.E., TAYLOR C.A., Patient-specific modeling of blood flow and pressure in human coronary arteries, Ann. Biomed. Eng., 2010, 3195–3209.
- [14] KIMURA T., ABE K., SHIZUTA S., ODASHIRO K., YOSHIDA Y., SAKAI K., Long-term clinical and angiographic follow-up after coronary stent placement in native coronary arteries, Circulation, 2002, 2986–2991.
- [15] KIPSHIDZE N., DANGAS G., TSAPENKO M., MOSES J., LEON M.B., KUTRYK M., SERRUYS P., Role of the endothelium in modulating neointimal formation: vasculoprotective approaches to attenuate restenosis after percutaneous coronary interventions, J. Am. Coll. Cardiol., 2004, 733–739.
- [16] KOLANDAIVELU K., SWAMINATHAN R., GIBSON W.J., KOLACHALAMA V.B., NGUYEN-EHRENREICH K.L., GIDDINGS V.L., Stent thrombogenicity early in high-risk interventional settings is driven by stent design and deployment and protected by polymer-drug coatings, Circulation, 2011, 1400–1409.
- [17] KOSKINAS K.C., CHATZIZISIS Y.S., ANTONIADIS A.P., GIANNOGLOU G.D., Role of endothelial shear stress in stent restenosis and thrombosis: pathophysiologic mechanisms and implications for clinical translation, J. Am. Coll. Cardiol., 2012, 1337–1349.
- [18] KU D.N., GIDDENS D.P., ZARINS C.K., GLAGOV S., Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress, Arteriosclerosis, 1985, 293–302.
- [19] LI X., LIU X., ZHANG P., FENG C., SUN A., KANG H., Numerical simulation of haemodynamics and low-density lipoprotein transport in the rabbit aorta and their correlation with atherosclerotic plaque thickness, J. R. Soc. Interface, 2017.
- [20] LIU X., FAN Y., DENG X., Effect of the endothelial glycocalyx layer on arterial LDL transport under normal and high pressure, J. Theor. Biol., 2011, 71–81.
- [21] LIU X., WANG L., WANG Z., LI Z., KANG H., FAN Y., Bioinspired helical graft with taper to enhance helical flow, J. Biomech., 2016, 3643–3650.
- [22] NAKAZAWA G., VORPAHL M., FINN A.V., NARULA J., VIRMANI R., One step forward and two steps back with drugeluting- stents: from preventing restenosis to causing late thrombosis and nouveau atherosclerosis, JACC Cardiovasc Imaging, 2009, 625–628.
- [23] NG J., BOURANTAS C.V., TORII R., ANG H.Y., TENEKECIOGLU E., SERRUYS P.W., FOIN N., Local Hemodynamic Forces After Stenting: Implications on Restenosis and Thrombosis, Arterioscler. Thromb. Vasc. Biol., 2017, 2231–2242.
- [24] OTSUKA F., FINN A.V., YAZDANI S.K., NAKANO M., KOLODGIE F.D., VIRMANI R., The importance of the endothelium in atherothrombosis and coronary stenting, Nat. Rev. Cardiol., 2012, 439–453.
- [25] OTSUKA F., SAKAKURA K., YAHAGI K., JONER M., VIRMANI R., Has our understanding of calcification in human coronary atherosclerosis progressed?, Arterioscler. Thromb. Vasc. Biol., 2014, 724–736.
- [26] PACHE J., KASTRATI A., MEHILLI J., SCHUHLEN H., DOTZER F., HAUSLEITER J., Intracoronary stenting and angiographic results: strut thickness effect on restenosis outcome (ISAR-STEREO-2) trial, J. Am. Coll. Cardiol., 2003, 1283–1288.
- [27] PARK S.J., KANG S.J., VIRMANI R., NAKANO M., UEDA Y., Instent neoatherosclerosis: a final common pathway of late stent failure, J. Am. Coll. Cardiol., 2012, 2051–2057.
- [28] POON E.K., BARLIS P., MOORE S., PAN W.H., LIU Y., YE Y., Numerical investigations of the haemodynamic changes associated with stent malapposition in an idealised coronary artery, J. Biomech., 2014, 2843–2851.
- [29] SEO T., SCHACHTER L.G., BARAKAT A.I., Computational study of fluid mechanical disturbance induced by endovascular stents, Ann. Biomed. Eng., 2005, 444–456.
- [30] STONE G.W., ELLIS S.G., COLOMBO A., DAWKINS K.D., GRUBE E., CUTLIP D.E., Offsetting impact of thrombosis and restenosis on the occurrence of death and myocardial infarction after paclitaxel-eluting and bare metal stent implantation, Circulation, 2007, 2842–2847.
- [31] SUN N., WOOD N.B., HUGHES A.D., THOM S.A., XU X.Y., Fluid-wall modelling of mass transfer in an axisymmetric stenosis: effects of shear-dependent transport properties, Ann. Biomed. Eng., 2006, 1119–1128.
- [32] TADA Y., WADA K., SHIMADA K., MAKINO H., LIANG E.I., MURAKAMI S., Roles of hypertension in the rupture of intracranial aneurysms, Stroke, 2014, 579–586.
- [33] VINK H., DULING B.R., Identification of distinct luminal domains for macromolecules, erythrocytes, and leukocytes within mammalian capillaries, Circ. Res., 1996, 581–589.
- [34] WADA S., KARINO T., Theoretical prediction of low-density lipoproteins concentration at the luminal surface of an artery with a multiple bend, Ann. Biomed. Eng., 2002, 778–791.
- [35] WANG J., JIN X., HUANG Y., RAN X., LUO D., YANG D., Endovascular stent-induced alterations in host artery mechanical environments and their roles in stent restenosis and late thrombosis, Regen. Biomater., 2018, 177–187.
- [36] WANG Z., LIU M., LIU X., SUN A., FAN Y., DENG X., Hydraulic conductivity and low-density lipoprotein transport of the venous graft wall in an arterial bypass, Biomed. Eng. Online, 2019, 50.
- [37] WANG Z., LIU X., KANG H., SUN A., FAN Y., DENG X., Enhanced accumulation of LDLs within the venous graft wall induced by elevated filtration rate may account for its accelerated atherogenesis, Atherosclerosis, 2014, 198–206.
- [38] XUE Y., LIU X., SUN A., ZHANG P., FAN Y., DENG X., Hemodynamic Performance of a New Punched Stent Strut: A Numerical Study, Artif. Organs, 2016, 669–677.
- [39] ZHANG D., XU P., QIAO H., LIU X., LUO L., HUANG W., Carotid DSA based CFD simulation in assessing the patient with asymptomatic carotid stenosis: a preliminary study, Biomed. Eng. Online, 2018, 31.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8439f77-c79a-42d6-b2d4-33bd50aeb8ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.