PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Textile Pretreatment Processes on the Signal Transferring Capability of Textile Transmission Lines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ procesów obróbki wstępnej na sprawność przenoszenia sygnału tekstylnych linii transmisyjnych
Języki publikacji
EN
Abstrakty
EN
Transmission lines in the textile structure are a path of supplying power or transmitting digital/analog signals to electronic components in a textronic system. The current experimental investigation concerned potential differences in the signal transferring capability of textile transmission lines that were subjected to different pretreatment processes. In this study, 11 conductive yarns (stainless steel, silver plated PA and insulated copper) with different linear resistance values were used to create transmission lines through different weave patterns. E-fabric structures containing transmission lines were subjected to combined desizing, alkaline scouring and hydrogen peroxide bleaching pretreatment processes. Signal-to-noise measurements were performed before and after each pretreatment process. In order to make any reasonable comparison of the signal transferring capability of efabric samples, recorded signals were analysed using Matlab ® and their SNR values were also compared statistically. The results show that the pretreatment processes, the linear resistance of conductive yarns and the type of weave structure significantly influence the signal transferring capability of the transmission lines.
PL
Linie transmisyjne w strukturze tekstylnej są ścieżką zasilania lub przesyłania sygnałów analogowych/cyfrowych do komponentów elektronicznych w tekstronice. Badania eksperymentalne dotyczą potencjalnych różnic w sprawności przenoszenia sygnału tekstylnych linii transmisyjnych, które zostały poddane różnym procesom obróbki wstępnej. W pracy zastosowano 11 przędz przewodzących o różnych wartościach oporu liniowego wykonanych ze stali nierdzewnej, posrebrzanego poliamidu i izolowanych drutów miedzianych. Przędze te wykorzystano do stworzenia linii transmisyjnych poprzez zastosowanie różnych splotów tkackich. Struktury tkanin zawierających linie transmisyjne poddano procesom: usuwania klejonki, obróbki alkalicznej i bielenia nadtlenkiem wodoru. Przed i po każdym procesie obróbki wstępnej dokonano pomiarów zakłóceń. W celu porównania sprawności przenoszenia sygnału zarejestrowane sygnały były analizowane i porównane statystycznie. Wyniki pokazują, że procesy obróbki wstępnej, opór liniowy przędz przewodzących oraz typ splotu mają istotny wpływ na sprawność przenoszenia sygnału tekstylnych linii transmisyjnych.
Rocznik
Strony
55--62
Opis fizyczny
Bibliogr. 31 poz., rys., tab.
Twórcy
autor
  • Textile Engineering Department, Istanbul Technical University, Istanbul, Turkey
Bibliografia
  • 1. Odhiambo SA, Gilbert DM, Hertleer C, Schwarz A, Langenhove LV. Discharge characteristics of poly(3,4-ethylene dioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) textile batteries; comparison of silver coated yarn electrode devices and pure stainless steel filament yarn electrode devices. Textile Research Journal 2014: 347-354.
  • 2. Leśnikowski J. Textile Transmission Lines in the Modern Textronic Clothes. Fibres & Textiles in Eastern Europe 2011; 19, 6: 89-93.
  • 3. Varnaitė S, Katunskis J. Influence of Washing on the Electric Charge Decay of Fabrics with Conductive Yarns. Fibres & Textiles in Eastern Europe 2009; 17, 5: 69-75.
  • 4. Devaux E, Koncar V, Kim B, Campagne C, Roux C, Rochery M, Saihi D. Processing and characterization of conductive yarns by coating or bulk treatment forsmarttextile applications. Transactions of the Institute of Measurement and Control 2007; 29 (3/4): 355–376.
  • 5. Negru D, Buda C-T, Avram D. Electrical Conductivity of Woven Fabrics Coated with Carbon Black Particles. Fibres & Textiles in Eastern Europe 2012; 1(90): 53-56.
  • 6. Kim B, Koncar V, Dufour C. Poly- anilineCoated PET Conductive Yarns: Study of Electrical, Mechanical and ElectroMechanical Properties. Journal of Applied Polymer Science 2006; 101(3): 1252–1256.
  • 7. Gasana E, Westbroek P, Hakuzi- mana J, De Clerck K, Priniotakis G, Kiekens P, Tseles D. Electroconduc- tive textile structures trough electroless deposition of polypyrolle and copper at polyaramide surfaces. Surface & Coatings Technology 2006; 201: 3547-3551.
  • 8. Varnaitė S, Vitkauskas A, Abraitienė A, Rubežienė V, Valienė V. The features of electric charge decay in the Polyester Fabric containing metal fibres. Materials Science 2008; 14(2): 157-161.
  • 9. Schwarz A, Hakuzimana, J, Westbroek P, Gilbert DM, Priniotakis G, Nyokong T, Langenhove L. A study on the morphology of thin copper films on paraaramid yarns and their influence on the yarn’s electro-conductive and mechanical properties. Textile Research Journal 2012; 82(15): 1587–1596.
  • 10. Wang X, Xu W, Li W, Cui W. Study on the Electrical Resistance of Textiles under Wet Conditions. Textile Research Journal 2009; 79 (8): 753–760.
  • 11. Fakin D, Golob D, Stjepanovič Z. The Effect of Pretreatment on the Environment and Dyeing Properties of a Selected Cotton Knitted Fabric. Fibres & Textiles in Eastern Europe 2008; 16(2): 101-104.
  • 12. Uddin MG. Determination Of Weight Loss Of Knit Fabrics In Combined Scouring-Bleaching And Enzymatic Treatment. J. Innov. Dev. Strategy 2010; 4(1): 18-21.
  • 13. Choudhury AKR. Textile Preparation and Dyeing. Special Indian Ed., Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 2006: 149-150, 168, 185, 285.
  • 14. Broadbent AD. Basic Principles of Textile Coloration. Society of Dyers and Colourists, Canada, 2001: pp. 30-31.
  • 15. Li L, Man Au W, Li Y, Man Wan MK, Wan SH, Wong KS. Design of Intelligent Garment with Transcutaneous Electrical Nerve Stimulation Function Based on the Intarsia Knitting Technique. Textile Research Journal 2010; 80(3): 279–286.
  • 16. Li L, Au WM, Li Y, Wan KM, Chung WY, Wong KS. A Novel Design Method for an Intelligent Clothing Based on Garment Design and Knitting. Textile Research Journal 2009; 79(18): 1670–1679.
  • 17. Lai K, Sun RJ, Chen MY, Wu H, Zha A. Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments. Textile Research Journal 2007; 77(4): 242–246.
  • 18. Zhang H, Tao X, Wang S, Yu T. ElectroMechanical Properties of Knitted Fabric Made From Conductive Multi-Filament Yarn Under Unidirectional Extension. Textile Research Journal 2005; 75: 598.
  • 19. Kayacan O, Bulgun E, Sahin O. Implementation of Steel-based Fabric Panels in a Heated Garment Design. Textile Research Journal 2009; 79(16): 1427– 1437.
  • 20. Su CI, Chern JT. Effect of Stainless Steel-Containing Fabrics on Electromagnetic Shielding Effectiveness. Textile Research Journal 2004; 74: 51-54.
  • 21. Paradiso R, Loriga G, Taccini N. A Wearable Health Care System Based on Knitted Integrated Sensors. IEEE Transactions On Information Technology In Biomedicine 2005; 9(3): 337-344.
  • 22. Chen HC, Lin JH, Lee KC. Electromagnetic Shielding Effectiveness of Copper/ Stainless Steel/Polyamide Fiber CoWoven-Knitted Fabric Reinforced Polypropylene Composites. Journal of Reinforced Plastics and Composites 2008; 27(2): 187-203.
  • 23. Zhang H, Tao X, Yu T, Wang S. Conductive knitted fabric as large-strain gauge under high temperature. Sensors and Actuators 2006; A 126: 129–140.
  • 24. Locher I, Tröster G. Enabling Technologies for Electrical Circuits on a Woven Monofilament Hybrid Fabric. Textile Research Journal 2008; 78(7): 583–594.
  • 25. Lai K, Sun RJ, Chen MY, Wu H, Zha A. Electromagnetic Shielding Effectiveness of Fabrics with Metallized Polyester Filaments. Textile Research Journal 2007; 77(4): 242–246.
  • 26. Ramachandran T, Vigneswaran C. Design and Development of Copper Core Conductive Fabrics for Smart Textiles. Journal Of Industrial Textiles 2009; 39: 81-92.
  • 27. Kursun-Bahadir S, Koncar V, Kalaoglu F, Cristian I. Thomassey S. Assessing the Signal Quality of an Ultrasonic Sensor on Different Conductive Yarns Usedas Transmission Lines. Fibres & Textiles in Eastern Europe 2011; 19, 5(88): 75-81.
  • 28. Kim S, Leonhardt S, Zimmermann N, Kranen P, Kensche D, Müller E, Quix C. Influence of contact pressure and moisture on the signal quality of a newly developed textile ECG sensor shirt. In: 5th International Workshop on Wearable and Implantable Body Sensor Networks.
  • 29. Renumadhavi C, Madhava Kumar S, Ananth AG, Srinivasan N. A new approach for evaluating SNR of ECG signals and its implementation. In: 6th WSEAS International Conference on Simulation, Modelling and Optimization. Stevens Point, Wisconsin, USA, 2006: 202-205.
  • 30. Dhawan A, Tushar K, Ghosh Seyam AM, Muth JF. Woven Fabric-Based Electrical Circuits: Part II: Yarn and Fabric Structures to Reduce Crosstalk Noise in Woven Fabric-Based Circuits. Textile Research Journal 2004; 74(11): 955-960.
  • 31. Rattfalt L, Linden M, Hult P, et al. Electrical characteristics of conductive yarns and textile electrodes for medical applications. Med. Bio. Engr. Comp. 2007; 45, 1251–1257.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b8406410-0697-48d6-95d0-6dc1b43da012
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.