PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Long-term prediction of non-processed waste radioactivity of a niobium mine in Brazil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This work analyzed samples from a niobium mine in Brazil which produces massive quantities of non-processed waste (NPW) each year. Due to concerns about the environmental impact of stacking up this material in the long-term, investigations have had been made to evaluate its re-use options. Nevertheless, there are no regulations from the Brazilian National Commission of Nuclear Energy about commercializing this sub-product which has highly variable radiological activity because of the different lithologies present in the mine. Thus, the activity concentrations of 238U, 232Th, 226Ra, 228Ra, 228Th and 40K of the naturally radioactive ore (53 boreholes) and of the NPW (8 samples) were measured. Radiological hazard indices, radium equivalent, internal and external hazard and their equivalent doses were also calculated. Moreover, the X-ray diffraction, depth and coordinates of all samples were used to identify radioactive prone areas in the mine. For the NPW samples, the activity concentrations (in Bq/kg) were, on average, 64.9 of 238U, 104.8 of 226Ra, 1813.9 of 232Th, 1292.2 of 228Th, 1224.3 of 228Ra and 1184.2 of 40K. The analysis showed great variability between samples and the results can be used to evaluate possible uses such as building materials or foundation for roadbeds.
Rocznik
Strony
142--149
Opis fizyczny
Bibliogr. 32 poz.
Twórcy
  • Universidade Federal de Alfenas (UNIFAL-MG), Rodovia José Aurélio Vilela, 11999, Poços de Caldas, Brazil
  • ECONS S/A, Via Stazione 19, Bioggio, Switzerland
  • Instituto de Pesquisas Energéticas e Nucleares (IPEN), Av. Prof. Lineu Prestes, 2242, São Paulo, Brazil
  • CMOC International, Rodovia BR 050, Km 271, Catalão, Brazil
  • Universidade de São Paulo (USP), Rua Professor Melo Moraes, 2373, São Paulo, Brazil
Bibliografia
  • 1. Alves, M. A. S., Pereira, V. P., Neto, A. C. B., & Menegotto, E. (2018). Weathering of the Madeira world-class Sn-Nb-Ta (Cryolite, REE, U, Th) deposit, Pitinga mine (Amazon, Brazil). Journal of Geochemical Exploration, 186, 61-76. https://doi.org/10.1016/j. gexplo.2017.12.003.
  • 2. Associação Brasileira de Normas Técnicas (2009). Agregados para concreto - Especificação. Retrieved November 21, 2018 from https://www.abntcatalogo.com.br/norma.aspx? ID=40092.
  • 3. Beretka, J., & Mattew, P. J. (1985). Natural radioactivity of Australian building materials, industrial waste sand by-products. Health Physics, 48(1), 87-95. https://doi.org/10. 1097/00004032-198501000-00007.
  • 4. Calvo, G., Mudd, G., Valero, A., & Valero, A. (2016). Decreasing ore grades in global metallic mining: A theoretical issue or a global reality? Resources, 5, 36. https://doi. org/10.3390/resources5040036.
  • 5. Comissão Nacional de Energia Nuclear (2014). Diretrizes básicas de proteção radiológica. Retrieved November 21, 2017 from http://appasp.cnen.gov.br/seguranca/normas/ pdf/Nrm301.pdf.
  • 6. Comissão Nacional de Energia Nuclear (2016). Requisitos de Segurança e Proteção Radiológica para Instalações Mínero-Industriais. Retrieved November 21, 2017 from http://appasp.cnen.gov.br/seguranca/normas/pdf/Nrm401.pdf.
  • 7. Departamento Nacional de Produção Mineral (2018). Sumário mineral 2016/ Coordenadores Thiers Muniz Lima, Carlos Augusto Ramos Neves Brasília: DNPM, 2018. DNPM/MME.
  • 8. Devore, J. (1995). Probability and statistics for engineering and sciensces (4th ed.). Belmont (CA): Duxbury Press.
  • 9. EC, FAO, ILO, OECD/NEA, PAHO, UNEP, et al. (2014). Radiation Protection and Safety of radiation sources: International basic safety standards. General safety requirements part, Vol. 3. Vienna: IAEA.
  • 10. El Hajj, T., Silva, P., Gandolla, M., Dantas, G., Santos, A., & Delboni, H., Jr. (2017). Radiological hazard indices and elemental composition of Brazilian and Swiss ornamental rocks. Brazilian Journal of Radiation Sciences, 5(2)https://doi.org/10. 15392%2Fbjrs.v5i2.269.
  • 11. Ferrira, A. L. R., da Silva, J. N., Lima, C. A. M., & da Silva, F. C. A. (2018). Radiological risk classification of NORM industries in Brazil. Naturally occurring radioactive material (NORM VIII), proceedings of an international symposium held in Rio de Janeiro, Brazil, 18-21 October 2016. Vienna: International atomic energy agency.
  • 12. Garcia C Marques, M., Mohamad El Hajj, T., Maques Braga Junior, J., Chieregati, A., & Delboni Junior, H. (2017). Theory of Sampling and geostatistics for twin drill hole analysis in a niobium mine in Araxá, Brazil. Eighth world conference on sampling and blending: 9-11 may 2017 Perth, Australia (pp. 97-105). Carlton, Vic: AusIMM.
  • 13. Gonçalves de Lima, J. (2010). Perfil da mineração do nióbio. Retrieved March 12, 2018 from J Mendo Consultoria: http://www.mme.gov.br/documents/1138775/1256650/P11_RT20_Perfil_da_Mineraxo_do_Nixbio.pdf/48860760-63f2-489e-b4b9-e16236fd1413.
  • 14. Hazin, C. A., Gazineu, M. H. P., & de Farias, E. E. G. (2008). Uranium and thorium in Zircon sands processed in northeastern Brazil. IRPA 12: 12 international congress of the international radiation protection association (IRPA): Strengthening radiation protection worldwide, Argentina: SAR. Retrieved November 10, 2018 from https://inis.iaea.org/search/search.aspx?orig_q=RN:42070516.
  • 15. Hewamanna, R., Sumithrarachi, C., Mahawatte, P., Nanayakkara, H., & Ratnayake, H. (2001). Natural radioactivity and gamma dose from Sri Lankan clay bricks used in building construction. Applied Radiation and Isotopes, 54(2), 365-369. https://doi. org/10.1016/S0969-8043(00)00107-X.
  • 16. Hupp, A., Marshall, L., Campbell, D., Smith, R., & Mcguffin, V. (2008). Chemometric analysis of diesel fuel for forensic and environmental applications. Analytica Chimica Acta, 606(2), 159-171. https://doi.org/10.1016/j.aca.2007.11.007.
  • 17. International Atomic Energy Agency (1990). Practical aspects of operating a neutron analysis laboratory. Vienna: International Atomic Energy Agency.
  • 18. International Atomic Energy Agency (2013). Management of NORM residues. Vienna: International Atomic Energy Agency.
  • 19. Iwaoka, K., & Yonehara, H. (2012). Database of the radioactivity of NORM used as industrial raw materials. Radiation Protection Dosimetry, 152(4), 444-449. https://doi.org/10.1093/rpd/ncs067.
  • 20. Josef Maringer, F., Baumgartner, A., Cardellini, F., Cassette, P., Crespo, T., Dean, J., ... Vodenik, B. (2017). Advancements in NORM metrology - results and impact of the European joint research MetroNORM. Applied Radiation and Isotopes, 126, 273-278. https://doi.org/10.1016/j.apradiso.2017.02.040.
  • 21. Larijani, C., Schwendner, P., Cockell, C., Ivanov, P., Russell, B., Aitken-Smith, P., et al. (2017). Destructive and non-destructive measurements of NORM in monazite-rich sands of Brazil. Radiation Physics and Chemistry, 140, 180-185. https://doi.org/10. 1016/j.radphyschem.2017.01.010.
  • 22. Liu, H., & Pan, Z. (2011). NORM situation on non-uranium mining in China. Annals of the ICRP, 41(3-4), 343-351. Elsevier https://doi.org/10.1016/j.icrp.2012.06.015.
  • 23. Ma, W., Schott, D., & Lodewijks, G. (2017). A new procedure for Deep Sea mining tailings disposal. Minerals, 7, 47. https://doi.org/10.3390/min7040047.
  • 24. NPL Report IR 6 (2008). Recommended nuclear decay data. Retrieved December 13, 2018 from http://publications.npl.co.uk/npl_web/pdf/ir6.pdf.
  • 25. Otto, M. (1998). Multivariate methods. In R. Kellner, J. Mermet, M. Otto, & H. Widmer (Eds.). Analytical chemistry. Weinheim: Wiley VCH.
  • 26. Pitard, F. F. (1993). Pierre Gy's sampling theory and sampling practice: Heterogeneity, sampling correctness, and statistical process control (2nd ed.). Florida: CRC Press.
  • 27. Rangel Alves, A. (2015). Proposição de um modelo para avaliação do ciclo de vida do nióbio (PhD Thesis) Sao Paulo, Brazil: Faculdade de Engenharia, Arquitetura e Urbanismo, Universidade Metodista de Piracicaba. Retrieved November 30, 2018 from https://www.unimep.br/phpg/bibdig/aluno/visualiza.php?cod=1368.
  • 28. Tufail, M. (2012). Radium equivalent activity in the light of UNSCEAR report. Environmental Monitoring and Assessment, 184(9), 5663-5667. https://doi.org/10.1007/s10661-011-2370-6.
  • 29. UNSCEAR (2010). Sources and effects of ionizing radiation. United nations scientific committee on the effects of atomic radiation UNSCEAR 2000 report ot the general assembly, with scientific annexes (volume I: Sources). United Nations Publication.
  • 30. Valan, I., Mathiyarasu, R., Sridhar, S., Narayanan, V., & Arumainathan, S. (2014). Investigation of background radiation level in Krusadai island Mangrove, Gulf of Mannar, India. Journal of Radioanalytical and Nuclear Chemistry, 304(2), 735-744. https://doi.org/10.1007/s10967-014-3864-9.
  • 31. Vieira Zuccheratte, A., Braccini Freire, C., & Soares Lameiras, F. (2017). Synthetic gravel for concrete obtained from sandy iron ore tailing and recycled polyethyltherephtalate. Construction and Building Materials, 151, 859-865. https://doi. org/10.1016/j.conbuildmat.2017.06.133.
  • 32. Vives i Batlle, J., Ulanovsky, A., & Copplestone, D. (2017). A method for assessing exposure of terrestrial wildlife to environmental radon (222Rn) and thoron (220Rn). The Science of the Total Environment, 605-606, 569-577. https://doi.org/10.1016/j.scitotenv.2017.06.154.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-b83ca69a-081a-4107-87f0-6d0f39e34d04
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.